World J Gastroenterol
January 2020
Background: Hepatocellular carcinoma (HCC) is a common cancer with a poor prognosis. Previous studies revealed that the tumor microenvironment (TME) plays an important role in HCC progression, recurrence, and metastasis, leading to poor prognosis. However, the effects of genes involved in TME on the prognosis of HCC patients remain unclear.
View Article and Find Full Text PDFNeural Netw
November 2019
Heterogeneous domain adaptation aims to exploit the source domain data to train a prediction model for the target domain with different input feature space. Current methods either map the data points from different domains with different feature space to a common latent subspace or use asymmetric projections for learning the classifier. However, these learning methods separate common space learning and shared classifier training.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
April 2019
In most domain adaption approaches, all features are used for domain adaption. However, often, not every feature is beneficial for domain adaption. In such cases, incorrectly involving all features might cause the performance to degrade.
View Article and Find Full Text PDFComput Intell Neurosci
December 2016
We propose a simple online learning algorithm especial for high-dimensional data. The algorithm is referred to as online sequential projection vector machine (OSPVM) which derives from projection vector machine and can learn from data in one-by-one or chunk-by-chunk mode. In OSPVM, data centering, dimension reduction, and neural network training are integrated seamlessly.
View Article and Find Full Text PDFBig dimensional data is a growing trend that is emerging in many real world contexts, extending from web mining, gene expression analysis, protein-protein interaction to high-frequency financial data. Nowadays, there is a growing consensus that the increasing dimensionality poses impeding effects on the performances of classifiers, which is termed as the "peaking phenomenon" in the field of machine intelligence. To address the issue, dimensionality reduction is commonly employed as a preprocessing step on the Big dimensional data before building the classifiers.
View Article and Find Full Text PDFIn this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets.
View Article and Find Full Text PDFActivity recognition based on mobile embedded accelerometer is very important for developing human-centric pervasive applications such as healthcare, personalized recommendation and so on. However, the distribution of accelerometer data is heavily affected by varying users. The performance will degrade when the model trained on one person is used to others.
View Article and Find Full Text PDF