Tumor-associated macrophages play an important role in cancer progression and immunosuppression, making their receptors promising therapeutic targets. MerTK, a TAM receptor, regulates macrophage efferocytosis and polarization, and its inhibition holds potential for tumor growth suppression and immune modulation. However, Tyro3, another TAM receptor, is involved in neurogenesis, highlighting the need to selectively target MerTK while avoiding Tyro3 inhibition to prevent neurotoxicity.
View Article and Find Full Text PDFA series of bifunctional compounds have been discovered for their dual functionality as MER/AXL inhibitors and immune modulators. The furanopyrimidine scaffold, renowned for its suitability in kinase inhibitor discovery, offers at least three distinct pharmacophore access points. Insights from molecular modeling studies guided hit-to-lead optimization, which revealed that the 1,3-diketone side chain hybridized with furanopyrimidine scaffold that respectively combined amino-type substituent and 1-pyrazol-4-yl substituent on the top and bottom of the aryl regions to produce and , exhibiting potent antitumor activities in various syngeneic and xenograft models.
View Article and Find Full Text PDFBackground: Hepatocellular carcinoma (HCC) is the sixth most common type of cancer and has a high mortality rate worldwide. Sorafenib is the only systemic treatment demonstrating a statistically significant but modest overall survival benefit. We previously have identified the aurora kinases (AURKs) and FMS-like tyrosine kinase 3 (FLT3) multikinase inhibitor DBPR114 exhibiting broad spectrum anti-tumor effects in both leukemia and solid tumors.
View Article and Find Full Text PDFColony-stimulating factor-1 receptor (CSF1R) is implicated in tumor-associated macrophage (TAM) repolarization and has emerged as a promising target for cancer immunotherapy. Herein, we describe the discovery of orally active and selective CSF1R inhibitors by property-driven optimization of BPR1K871 (), our clinical multitargeting kinase inhibitor. Molecular docking revealed an additional nonclassical hydrogen-bonding (NCHB) interaction between the unique 7-aminoquinazoline scaffold and the CSF1R hinge region, contributing to CSF1R potency enhancement.
View Article and Find Full Text PDFActivating mutations in the Wnt pathway are a characteristic feature of colorectal cancer (CRC). The R-spondin (RSPO) family is a group of secreted proteins that enhance Wnt signaling and RSPO2 and RSPO3 gene fusions have been reported in CRC. We have previously shown that Wnt pathway blockers exhibit potent combinatorial activity with taxanes to inhibit tumor growth.
View Article and Find Full Text PDFThe WNT pathway mediates intercellular signaling that regulates cell fate in both normal development and cancer. It is widely appreciated that the WNT pathway is frequently dysregulated in human cancers through a variety of genetic and epigenetic mechanisms. Targets in the WNT pathway are being extensively pursued for the development of new anticancer therapies, and we have advanced two WNT antagonists for clinical development: vantictumab (anti-FZD) and ipafricept (FZD8-Fc).
View Article and Find Full Text PDFDeregulation of the β-catenin signaling has long been associated with cancer. Intracellular components of this pathway, including axin, APC, and β-catenin, are frequently mutated in a range of human tumors, but the contribution of specific extracellular ligands that promote cancer development through this signaling axis remains unclear. We conducted a reporter-based screen in a panel of human tumors to identify secreted factors that stimulate β-catenin signaling.
View Article and Find Full Text PDFPurpose: The Notch pathway plays an important role in both stem cell biology and cancer. Dysregulation of Notch signaling has been reported in several human tumor types. In this report, we describe the development of an antibody, OMP-59R5 (tarextumab), which blocks both Notch2 and Notch3 signaling.
View Article and Find Full Text PDFPurpose: We previously showed that targeting Delta-like ligand 4 (DLL4) in colon and breast tumors inhibited tumor growth and reduced tumor initiating cell frequency. In this report, we have extended these studies to pancreatic cancer and probed the mechanism of action in tumor and stromal cells involved in antitumor efficacy.
Experimental Design: Patient-derived pancreatic xenograft tumor models were used to evaluate the antitumor effect of anti-DLL4.
The Wnt/β-catenin pathway, which signals through the Frizzled (Fzd) receptor family and several coreceptors, has long been implicated in cancer. Here we demonstrate a therapeutic approach to targeting the Wnt pathway with a monoclonal antibody, OMP-18R5. This antibody, initially identified by binding to Frizzled 7, interacts with five Fzd receptors through a conserved epitope within the extracellular domain and blocks canonical Wnt signaling induced by multiple Wnt family members.
View Article and Find Full Text PDFKRAS mutations are frequent in colorectal cancer (CRC) and are associated with clinical resistance to treatment with the epidermal growth factor receptor (EGFR)-targeted monoclonal antibodies. Delta-like 4 ligand (DLL4) is an important component of the Notch signaling pathway and mediates stem cell self-renewal and vascular development. DLL4 inhibition in colon tumor cells reduces tumor growth and stem cell frequency.
View Article and Find Full Text PDFCell Stem Cell
August 2009
Previous studies have shown that blocking DLL4 signaling reduced tumor growth by disrupting productive angiogenesis. We developed selective anti-human and anti-mouse DLL4 antibodies to dissect the mechanisms involved by analyzing the contributions of selectively targeting DLL4 in the tumor or in the host vasculature and stroma in xenograft models derived from primary human tumors. We found that each antibody inhibited tumor growth and that the combination of the two antibodies was more effective than either alone.
View Article and Find Full Text PDFTreatment of inflammation is often accomplished through the use of glucocorticoids. However, their use is limited by side effects. We have examined the activity of a novel glucocorticoid receptor ligand that binds the receptor efficiently and strongly represses inflammatory gene expression.
View Article and Find Full Text PDFAcquired drug resistance is a major obstacle in cancer therapy. As for many other drugs, this is also the case for gemcitabine, a nucleoside analogue with activity against non-small cell lung cancer (NSCLC). Here, we evaluate the ability of bexarotene to modulate the acquisition and maintenance of gemcitabine resistance in Calu3 NSCLC models.
View Article and Find Full Text PDFThis study evaluated the anti-tumor efficacy of combining the RXR agonist, bexarotene, with the PPARgamma agonist, rosiglitazone, in colon cancer. Moser, a human colon cancer cell line, was treated with bexarotene and rosiglitazone alone or in combination and the effect on growth and differentiation were examined. The data demonstrated that the bexarotene/rosiglitazone combination produced greater efficacy in growth inhibition than either single agent.
View Article and Find Full Text PDFBackground: We previously reported that a retinoid X receptor agonist bexarotene prevented and overcame acquired drug resistance in advanced breast cancer and non-small cell lung cancer. The present study was to evaluate the effect of bexarotene on the development of multidrug resistance in advanced prostate cancer.
Methods: Human prostate cancer cells PC3 were repeatedly treated in culture with paclitaxel, doxorubicin, or cisplatin with or without bexarotene for 3 months.
This study was designed to evaluate, using preclinical models of non-small cell lung cancer (NSCLC), the growth inhibitory effects of the retinoid X receptor (RXR) agonist bexarotene (LGD1069, Targretin) in combination with cytotoxic agents currently used as standard first-line therapy in advanced disease. Although single-agent bexarotene had modest growth inhibitory effects in several cell lines, efficacy was observed only in the micromolar range (>1muM), which approximates the plasma C(max) measured in pharmacokinetic studies in patients. However, when combined with paclitaxel or vinorelbine, bexarotene produced a concentration-dependent enhancement of the growth inhibitory activities of paclitaxel and vinorelbine.
View Article and Find Full Text PDFAcquired drug resistance represents a major challenge in the therapeutic management of breast cancer patients. We reported previously that the retinoid X receptor-selective agonist bexarotene (LGD1069, Targretin) was efficacious in treating animal models of tamoxifen-resistant breast cancer. The goal of this study was to evaluate the effect of bexarotene on development of acquired drug resistance and its role in overcoming acquired drug resistance in advanced breast cancer.
View Article and Find Full Text PDFPurpose: Paclitaxel is an important anticancer agent for the treatment of non-small cell lung cancer (NSCLC). However, its use in cancer therapy is limited by development of acquired drug resistance. The goal of this study was to determine the effect of bexarotene on development of acquired paclitaxel resistance in NSCLC.
View Article and Find Full Text PDFBreast Cancer Res Treat
November 2004
We have previously shown that the retinoid X receptor (RXR) ligand bexarotene (LGD1069, Targretin) is efficacious as a chemopreventive and chemotherapeutic agent in rat N-nitroso-N-methylurea (NMU)-induced mammary carcinomas (Cancer Res 58: 479-484, 1998). To determine additional role for bexarotene in breast cancer treatment, we evaluated the effect of bexarotene on the efficacy of paclitaxel (Taxol) treatment in a rat NMU-derived mammary tumor cell line, NMU-417, in vitro and in rat NMU-induced mammary tumors in vivo. Our growth inhibition results showed that the bexarotene/paclitaxel combination produced a concentration-dependent synergy in NMU-417 tumor cell line.
View Article and Find Full Text PDF