Spin valves are essential components in spintronic memory devices whose conductance is modulated by controlling spin-polarized electron tunnelling through the alignment of the magnetization in ferromagnetic elements. Whereas conventional spin valves unavoidably require at least two ferromagnetic elements, here we demonstrate a van der Waals spin valve based on a tunnel junction that comprises only one such ferromagnetic layer. Our devices combine an FeGeTe electrode acting as a spin injector together with a paramagnetic tunnel barrier, formed by a CrBr multilayer operated above its Curie temperature.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals magnets show strong interconnection between their electrical, magnetic, and structural properties. Here, the emergence of a luminescent transition is revealed upon crossing the Néel transition temperature of CrPS, a layered antiferromagnetic semiconductor. This luminescent transition occurs above the lowest absorption level.
View Article and Find Full Text PDFInterfaces between twisted 2D materials host a wealth of physical phenomena originating from the long-scale periodicity associated with the resulting moiré structure. Besides twisting, an alternative route to create structures with comparably long-or even longer-periodicities is inducing a differential strain between adjacent layers in a van der Waals (vdW) material. Despite recent theoretical efforts analyzing its benefits, this route has not yet been implemented experimentally.
View Article and Find Full Text PDFCharge density wave (CDW) orders in vanadium-based kagome metals have recently received tremendous attention, yet their origin remains a topic of debate. The discovery of ScVSn, a bilayer kagome metal featuring an intriguing [Formula: see text] CDW order, offers a novel platform to explore the underlying mechanism behind the unconventional CDW. Here, we combine high-resolution angle-resolved photoemission spectroscopy, Raman scattering and density functional theory to investigate the electronic structure and phonon modes of ScVSn.
View Article and Find Full Text PDFIn twisted two-dimensional (2D) magnets, the stacking dependence of the magnetic exchange interaction can lead to regions of ferromagnetic and antiferromagnetic interlayer order, separated by non-collinear, skyrmion-like spin textures. Recent experimental searches for these textures have focused on CrI, known to exhibit either ferromagnetic or antiferromagnetic interlayer order, depending on layer stacking. However, the very strong uniaxial anisotropy of CrI disfavors smooth non-collinear phases in twisted bilayers.
View Article and Find Full Text PDFMicromachines (Basel)
January 2021
Polyvinylidene fluoride and its copolymers are a well-known family of low-cost ferroelectric materials widely used for the fabrication of devices for a wide range of applications. A biocompatibility, high optical quality, chemical and mechanical durability of poly(vinylidene fluoride-trifluoroethylene), (P(VDF-TrFE)), makes it particularly attractive for designing of effective coating layers for different diagnostic techniques. In the present work, the nonlinear optical characterization of P(VDF-TrFE)-coating films deposited onto a glass substrate was done.
View Article and Find Full Text PDFNanoscale Res Lett
December 2017
In this study, we report soft and solvothermal methods for synthesis of zinc oxide nanoparticles (ZnO NPs). Both methods involve a precursor and are carried out at the middle low-temperature regime. The effect of different solvents on the ZnO NPs properties was studied.
View Article and Find Full Text PDFThe present study is objected to develop an analytical remote optical diagnostics of the functionalized carbons surface. Carbon composites with up to 1 mmol g of irreversibly adsorbed bromine were produced by the room temperature plasma treatment of an activated carbon fabric (ACF) derived from polyacrylonitrile textile. The brominated ACF (BrACF) was studied by elastic optical scattering indicatrix analysis at wavelength 532 nm.
View Article and Find Full Text PDFNanoscale Res Lett
December 2017
The porous silicon (PS) surface modification diagnostics due to functionalization and water adsorption/desorption processes were provided by the self-action effects of picosecond range pulsed laser radiation at 1064 nm. It was shown that the PS surface functionalization-oxide removal, alkylation, and oxidation-resulted in a refractive nonlinear optical (NLO) response sign turn to self-focusing (Δn>0) versus the self-defocusing (Δn<0) observed in the aged PS. The sensitivity of the proposed technique was revealed to water adsorption/desorption from the chemically oxidized PS interface.
View Article and Find Full Text PDFFor the first time, the diagnostics of oxyorthosilicates single crystals based on self-action of picosecond range laser pulses at 1,064 nm (1.17 eV) has been performed. High sensitivity of the photoinduced refractive index variation to the substitution of the Lu atoms by Gd in the LSO/LGSO crystalline host as well as to the admixture of Ce was found.
View Article and Find Full Text PDF