Publications by authors named "Vivek Phatale"

Glioblastoma (GBM), being a formidable disease, has emerged as a ticking time bomb owing to the unavailability of effective treatment modalities, poor prognosis, and limited life expectancy. For effective GBM treatment, intracellular delivery of therapeutics is a dire necessity, which is hindered by the blood-brain barrier (BBB) and blood-tumor barrier (BTB). Nanocarriers (NCs) have emerged as novel biomedical tools for delivering therapeutics for the last so many years.

View Article and Find Full Text PDF

Cancer, being one of the most outrageous diseases, contributed to 48 % of the mortality in 2022, with lung cancer leading the race with a 12.4 % incidence rate. Conventional treatment modalities like radio-, chemo-, photo-, and immunotherapy employing nanocarriers often face several setbacks, such as non-specific delivery, off-site toxicity, rapid opsonization via the host immune system, and greater tumor recurrence rates.

View Article and Find Full Text PDF

The advancement in exclusively tailored therapeutic delivery systems has escalated a great deal of interest in targeted delivery to augment therapeutic efficacy and to lessen adverse effects. The targeted delivery approach promisingly helps to surmount the unmet clinical needs of conventional therapies, including chemoresistance, limited penetration, and side effects. In the case of melanoma, various receptors were overexpressed on the tumor site, among which folate receptor (FR) targeting is considered to be a progressive approach for managing melanoma.

View Article and Find Full Text PDF

Marine antimicrobial peptides (AMPs) are potent bioactive compounds with broad-spectrum activity against bacteria, viruses, and fungi, offering a promising alternative to traditional antibiotics. These small, cationic, and amphiphilic peptides (3-50 amino acids) are key components of marine organisms' immune defenses, adapted to harsh oceanic environments. Discovered in the 1980s, marine AMPs have garnered interest for their unique structures and potential applications in human health.

View Article and Find Full Text PDF

As per the World Health Organization (WHO) estimation, Alzheimer's disease (AD) will affect 100 million population across the globe by 2050. AD is an incurable neurodegenerative disease that remains a mystery for neurologists owing to its complex pathophysiology. Currently, available therapeutic regimens will only cause symptomatic relief by improving the cognitive and behavioral functions of AD.

View Article and Find Full Text PDF

The various kinds of nanocarriers (NCs) have been explored for the delivery of therapeutics designed for the management of skin manifestations. The NCs are considered as one of the promising approaches for the skin delivery of therapeutics attributable to sustained release and enhanced skin penetration. Despite the extensive applications of the NCs, the challenges in their delivery via skin barrier (majorly stratum corneum) have persisted.

View Article and Find Full Text PDF

Cancer is a devastating disease that causes a substantial number of deaths worldwide. Current therapeutic interventions for cancer include chemotherapy, radiation therapy, or surgery. These conventional therapeutic approaches are associated with disadvantages such as multidrug resistance, destruction of healthy tissues, and tissue toxicity.

View Article and Find Full Text PDF

Cancer is the leading cause of death across the globe, with 19.3 million new cancer cases and 10 million deaths in the year 2020. Conventional treatment modalities have numerous pitfalls, such as off-site cytotoxicity and poor bioavailability.

View Article and Find Full Text PDF

Oral drug delivery of microparticles demonstrates shortcomings like aggregation, decreased loading capacity and batch-to-batch variation, which limits its scale-up. Later, porous structures gained attention because of their large surface-to-volume ratio, high loading capacity and ability to carry biomacromolecules, which undergo degradation in GIT. But there are pitfalls like non-uniform particle size distribution, the impact of porogen properties, and harsh chemicals.

View Article and Find Full Text PDF

The liquid crystalline phase has attracted tremendous attention from researchers across the globe due to its intriguing properties. In this article, we enumerate the different classes of liquid crystals. Lyotropic liquid crystals (LLCs) exhibit their liquid crystalline nature based on the surrounding solvent media, which opens novel horizons in drug delivery and tissue regeneration.

View Article and Find Full Text PDF

Upon exhaustive research, the transdermal drug delivery system (TDDS) has appeared as a potential, well-accepted, and popular approach to a novel drug delivery system. Ease of administration, easy handling, minimum systemic exposure, least discomfort, broad flexibility and tunability, controlled release, prolonged therapeutic effect, and many more perks make it a promising approach for effective drug delivery. Although, the primary challenge associated is poor skin permeability.

View Article and Find Full Text PDF