Publications by authors named "Vindhya Vijay"

Unlabelled: Biliary tract cancers (BTC) are aggressive malignancies encompassing intrahepatic and extrahepatic cholangiocarcinoma, gallbladder carcinoma, and ampullary carcinoma. Here, we report integrative analysis of 63 BTC cell lines via multi-omics and genome-scale CRISPR screens. We identify widespread EGFR dependency in BTC, alongside dependencies selective to anatomic subtypes.

View Article and Find Full Text PDF

This work combines functional studies in model systems and examination of human tumor specimens to define a central oncogenic pathway driven by DNAJB1-PRKACA fusions in FLC. DNAJB1-PRKACA-mediated inactivation of the SIK stimulates CRTC2-p300-mediated transcription to drive tumor growth. The findings illuminate pathogenic mechanisms and inform therapeutic development.

View Article and Find Full Text PDF

Biliary tract cancers (BTCs) are a group of deadly malignancies encompassing intrahepatic and extrahepatic cholangiocarcinoma, gallbladder carcinoma, and ampullary carcinoma. Here, we present the integrative analysis of 63 BTC cell lines via multi-omics clustering and genome- scale CRISPR screens, providing a platform to illuminate BTC biology and inform therapeutic development. We identify dependencies broadly enriched in BTC compared to other cancers as well as dependencies selective to the anatomic subtypes.

View Article and Find Full Text PDF
Article Synopsis
  • The gene IDH1 often changes in many cancers, leading to a harmful substance that messes with the body's natural defenses.
  • Tumors with this change often keep immune cells out, but blocking the mutant IDH1 can help the body's immune system attack the cancer.
  • The study shows that the mutant IDH1 silences certain genes that would usually help the immune system work, but stopping this mutation can help reactivate those genes and boost immunity against tumors.
View Article and Find Full Text PDF

Adult liver malignancies, including intrahepatic cholangiocarcinoma and hepatocellular carcinoma, are the second leading cause of cancer-related deaths worldwide. Most individuals are treated with either combination chemotherapy or immunotherapy, respectively, without specific biomarkers for selection. Here using high-throughput screens, proteomics and in vitro resistance models, we identify the small molecule YC-1 as selectively active against a defined subset of cell lines derived from both liver cancer types.

View Article and Find Full Text PDF

Multiple cancers regulate oxidative stress by activating the transcription factor NRF2 through mutation of its negative regulator, KEAP1. NRF2 has been studied extensively in KEAP1-mutant cancers; however, the role of this pathway in cancers with wild-type KEAP1 remains poorly understood. To answer this question, we induced NRF2 via pharmacological inactivation of KEAP1 in a panel of 50+ non-small cell lung cancer cell lines.

View Article and Find Full Text PDF

Unlabelled: Isocitrate dehydrogenase 1 mutations (mIDH1) are common in cholangiocarcinoma. (R)-2-hydroxyglutarate generated by the mIDH1 enzyme inhibits multiple α-ketoglutarate-dependent enzymes, altering epigenetics and metabolism. Here, by developing mIDH1-driven genetically engineered mouse models, we show that mIDH1 supports cholangiocarcinoma tumor maintenance through an immunoevasion program centered on dual (R)-2-hydroxyglutarate-mediated mechanisms: suppression of CD8+ T-cell activity and tumor cell-autonomous inactivation of TET2 DNA demethylase.

View Article and Find Full Text PDF

One of the greatest challenges in treating acute myeloid leukemia (AML) is chemotherapy refractory disease. Previously, we demonstrated a novel mechanism whereby AML-induced endothelial cell (EC) activation leads to subsequent leukemia cell adherence, quiescence and chemoresistance, identifying activated ECs as potential mediators of relapse. We now show mechanistically that EC activation induces the secretion of interleukin-8 (IL-8) leading to significant expansion of non-adherent AML cells and resistance to cytarabine (Ara-C).

View Article and Find Full Text PDF

Patients with myelodysplastic syndromes (MDS) or acute myeloid leukemia (AML) are generally older and have more comorbidities. Therefore, identifying personalized treatment options for each patient early and accurately is essential. To address this, we developed a computational biology modeling (CBM) and digital drug simulation platform that relies on somatic gene mutations and gene CNVs found in malignant cells of individual patients.

View Article and Find Full Text PDF

Using traditional histological methods, researchers are hampered in their ability to image whole tissues or organs in large-scale 3D. Histological sections are generally limited to <20 µm as formalin fixed paraffin section on glass slides or <500 µm for free-floating fixed sections. Therefore, extensive efforts are required for serial sectioning and large-scale image reconstruction methods to recreate 3D for samples >500 µm using traditional methods.

View Article and Find Full Text PDF