Publications by authors named "Vincenzo Cerullo"

Wilms tumor 1 (WT1) is a tumor-associated antigen expressed in solid tumors and hematological malignancies. T-cell immunotherapies targeting WT1 are currently under development. To analyze endogenous T-cell responses against WT1, we trained computational models capable of detecting WT1-specific T-cell responses from T-cell receptor (TCR) sequencing data.

View Article and Find Full Text PDF

Epithelial ovarian cancers are largely comprised of immunogenic tumor sub-types with the degree of CD8+ T cell infiltration being prognostic of clinical outcome. Tumor antigen-specific T cells are identified among these infiltrating T cell populations which has spurred a decade of development towards antigen-specific immunotherapies. Despite these efforts, the success of such immunotherapies has shown to be limited.

View Article and Find Full Text PDF

Accurate quantification of viral vectors and vaccines is a crucial step required before any downstream use of virus preparations. The conventional immunocytochemistry-based method of adenovirus quantification has been widely used, but there are many areas for improvement toward accuracy and resource consumption savings to reduce viral miscalculation and wastage of vaccination materials. In this work, a one-step approach is implemented for optimized adenoviral quantification that uses a single antibody coupled with automated, high-throughput image acquisition and subsequent batch analysis.

View Article and Find Full Text PDF

Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines.

View Article and Find Full Text PDF

Microneedles (MNs) are a prospective system in cancer immunotherapy to overcome barriers regarding proper antigen delivery and presentation. This study aims at identifying the potential of MNs for the delivery of Peptide-coated Conditionally Replicating Adenoviruses (PeptiCRAd), whereby peptides enhance the immunogenic properties of adenoviruses presenting tumor associated antigens. The combination of PeptiCRAd with MNs containing polyvinylpyrrolidone and sucrose was tested for the preservation of structure, induction of immune response, and tumor eradication.

View Article and Find Full Text PDF

Cancer immunotherapy is focused on stimulating the immune system against cancer cells by exploiting immune checkpoint mechanisms. PD-1/PD-L1 is one of the most known immune checkpoints due to the widespread upregulation of the Programmed Death Ligand 1 (PD-L1) transmembrane protein in cancer tissues. Accordingly, taking advantage of the ability of oncolytic adenoviruses (OAd) to specifically infect and kill tumor cells over healthy ones, here, we developed a targeted delivery platform based on OAd to selectively deliver in cancer cells an antisense peptide nucleic acid (PNA) targeting the PD-L1 mRNA.

View Article and Find Full Text PDF
Article Synopsis
  • Immunotherapy, particularly using oncolytic adenoviruses that express specific cytokines, shows potential for treating clear cell renal cell carcinoma (ccRCC).
  • The study found that adenovirus treatment led to increased cytokine secretion and significant T-cell migration toward treated tumor cells, highlighting the role of CXCR3 receptors on T-cells, especially CD8+ T-cells.
  • Additionally, the research identifies immunogenic antigens that could improve the effectiveness of adenoviral treatments and emphasizes the importance of patient-derived organoids for developing and validating new immunotherapy strategies.
View Article and Find Full Text PDF

Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment.

View Article and Find Full Text PDF

Dendritic cells (DCs) are the main antigen presenting cells of the immune system and are essential for anti-tumor responses. DC-based immunotherapies are used in cancer treatment, but their functionality is not optimized and their clinical efficacy is currently limited. Approaches to improve DC functionality in anti-tumor immunity are therefore required.

View Article and Find Full Text PDF

Cancer immunotherapy requires a specific antitumor CD8 T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8 T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition.

View Article and Find Full Text PDF

Background: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers created PeptiVAX, a novel vaccine platform using PeptiCRAd technology, which targets broader T-cell responses by focusing on conserved regions across coronaviruses instead of just the SPIKE protein.
  • * Initial tests in human immune cells and mice showed that PeptiVAX effectively stimulated specific T-cell responses, suggesting it could be a fast and flexible solution for enhancing vaccine efficacy against SARS-CoV-2.
View Article and Find Full Text PDF

Peptide Nucleic Acids (PNAs) represent a promising tool for gene modulation in anticancer treatment. The uncharged peptidyl backbone and the resistance to chemical and enzymatic degradation make PNAs highly advantageous to form stable hybrid complexes with complementary DNA and RNA strands, providing higher stability than the corresponding natural analogues. Our and other groups' research has successfully shown that tailored PNA sequences can effectively downregulate the expression of human oncogenes using antigene, antisense, or anti-miRNA approaches.

View Article and Find Full Text PDF

Introduction: Malignant mesothelioma is a rare and aggressive form of cancer. Despite improvements in cancer treatment, there are still no curative treatment modalities for advanced stage of the malignancy. The aim of this study was to evaluate the anti-tumor efficacy of a novel combinatorial therapy combining AdV5/3-D24-ICOSL-CD40L, an oncolytic vector, with an anti-PD-1 monoclonal antibody.

View Article and Find Full Text PDF

To study and then harness the tumor-specific T cell dynamics after allogeneic hematopoietic stem cell transplant, we typed the frequency, phenotype, and function of lymphocytes directed against tumor-associated antigens (TAAs) in 39 consecutive transplanted patients, for 1 year after transplant. We showed that TAA-specific T cells circulated in 90% of patients but display a limited effector function associated to an exhaustion phenotype, particularly in the subgroup of patients deemed to relapse, where exhausted stem cell memory T cells accumulated. Accordingly, cancer-specific cytolytic functions were relevant only when the TAA-specific T cell receptors (TCRs) were transferred into healthy, genome-edited T cells.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination.

View Article and Find Full Text PDF
Article Synopsis
  • Epithelioid sarcoma (EpS) is a rare and aggressive soft-tissue cancer mostly seen in adolescents and young adults, with a high mortality rate of about 50% despite aggressive treatment approaches.
  • EpS has two main subtypes: a less aggressive distal (classic) type and a more dangerous proximal type, both characterized by a typical loss of the INI1 protein due to genetic changes.
  • Recent advancements, like the approval of the EZH2 inhibitor tazemetostat and efforts in developing immunotherapy, have shown limited success, highlighting the urgent need for new targeted therapies and the establishment of a collaborative research community to drive progress.
View Article and Find Full Text PDF
Article Synopsis
  • Gut microbiota significantly influences the effectiveness of cancer immunotherapy in melanoma patients, especially when combined with oncolytic viruses (OVs) that induce cell death and boost immune responses.
  • In experiments with a syngeneic mouse model, the use of vancomycin disrupted gut microbiota and weakened the antitumor effects of the oncolytic adenovirus Ad5D24-CpG (Ad-CpG).
  • Supplementing with Bifidobacterium enhanced Ad-CpG’s effectiveness by decreasing melanoma spread and altering tumor-infiltrating immune cell populations, with evidence supporting that certain bacterial components may activate beneficial T cells against melanoma.
View Article and Find Full Text PDF

The use of oncolytic viruses has become an attractive tool in the clinics for the treatment of various tumor types. Such viruses are genetically modified to conditionally replicate in malignant cells while unharming healthy cells. This platform offers a highly specific tumor killing with exceptional safety profiles.

View Article and Find Full Text PDF

The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines.

View Article and Find Full Text PDF

Immune checkpoint inhibitors have clinical success in prolonging the life of many cancer patients. However, only a minority of patients benefit from such therapy, calling for further improvements. Currently, most PD-L1 checkpoint inhibitors in the clinic do not elicit Fc effector mechanisms that would substantially increase their efficacy.

View Article and Find Full Text PDF

Oncolytic virus (OV)-based immunotherapy is mainly dependent on establishing an efficient cell-mediated antitumor immunity. OV-mediated antitumor immunity elicits a renewed antitumor reactivity, stimulating a T-cell response against tumor-associated antigens (TAAs) and recruiting natural killer cells within the tumor microenvironment (TME). Despite the fact that OVs are unspecific cancer vaccine platforms, to further enhance antitumor immunity, it is crucial to identify the potentially immunogenic T-cell restricted TAAs, the main key orchestrators in evoking a specific and durable cytotoxic T-cell response.

View Article and Find Full Text PDF

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment of cancer, but preclinical testing of hypotheses such as combination therapies has been complicated, in part due to species incompatibility issues. For example, one of few known permissive animal models for oncolytic adenoviruses is the Syrian hamster, for which an ICI, mainly an anti-PD-L1 monoclonal antibody (mAb) was not previously available. In this study, we developed an anti-Syrian hamster PD-L1 mAb to enable the evaluation of safety and efficacy, when combining anti-PD-L1 with an oncolytic adenovirus encoding tumour necrosis factor alpha (TNFα) and interleukin-2 (IL-2) (Ad5/3-E2F-D24-hTNFα-IRES-hIL-2 or TILT-123).

View Article and Find Full Text PDF

The use of cancer immunotherapies is not novel but has been used over the decades in the clinic. Only recently have we found the true potential of stimulating an anti-tumor response after the breakthrough of checkpoint inhibitors. Cancer immunotherapies have become the first line treatment for many malignancies at various stages.

View Article and Find Full Text PDF