Epithelial ovarian cancers are largely comprised of immunogenic tumor sub-types with the degree of CD8+ T cell infiltration being prognostic of clinical outcome. Tumor antigen-specific T cells are identified among these infiltrating T cell populations which has spurred a decade of development towards antigen-specific immunotherapies. Despite these efforts, the success of such immunotherapies has shown to be limited.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
March 2025
Accurate quantification of viral vectors and vaccines is a crucial step required before any downstream use of virus preparations. The conventional immunocytochemistry-based method of adenovirus quantification has been widely used, but there are many areas for improvement toward accuracy and resource consumption savings to reduce viral miscalculation and wastage of vaccination materials. In this work, a one-step approach is implemented for optimized adenoviral quantification that uses a single antibody coupled with automated, high-throughput image acquisition and subsequent batch analysis.
View Article and Find Full Text PDFClin Exp Med
December 2024
Decades of basic and translational research have led to a momentum shift in dissecting the relationship between immune cells and cancer. This culminated in the emergence of breakthrough immunotherapies that paved the way for oncologists to manage certain hard-to-treat cancers. The application of high-throughput techniques of genomics, transcriptomics, and proteomics was conclusive in making and expediting the manufacturing process of cancer vaccines.
View Article and Find Full Text PDFOncoimmunology
October 2024
Adv Healthc Mater
February 2025
Selenium (Se) is an element crucial for human health, known for its anticancer properties. Although selenium nanoparticles (SeNPs) have shown lower toxicity and higher biocompatibility than other Se compounds, bare SeNPs are unstable in aqueous solutions. In this study, several materials, including bovine serum albumin (BSA), chitosan, polymethyl vinyl ether-alt-maleic anhydride, and tocopherol polyethylene glycol succinate, are explored to develop stable SeNPs and further evaluate their potential as candidates for cancer treatment.
View Article and Find Full Text PDFCancer immunotherapy requires a specific antitumor CD8 T cell-driven immune response; however, upon genetic and epigenetic alterations of the antigen processing and presenting components, cancer cells escape the CD8 T cell recognition. As a result, poorly immunogenic tumors are refractory to conventional immunotherapy. In this context, the use of viral cancer vaccines in combination with hypomethylating agents represents a promising strategy to prevent cancer from escaping immune system recognition.
View Article and Find Full Text PDFBackground: Cancer immunotherapy relies on using the immune system to recognize and eradicate cancer cells. Adaptive immunity, which consists of mainly antigen-specific cytotoxic T cells, plays a pivotal role in controlling cancer progression. However, innate immunity is a necessary component of the cancer immune response to support an immunomodulatory state, enabling T-cell immunosurveillance.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
Malignant pleural mesothelioma (MPM) is an aggressive tumor with a poor prognosis. As the available therapeutic options show a lack of efficacy, novel therapeutic strategies are urgently needed. Given its T-cell infiltration, we hypothesized that MPM is a suitable target for therapeutic cancer vaccination.
View Article and Find Full Text PDFThe repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines.
View Article and Find Full Text PDFMol Ther Oncolytics
March 2023
Immune checkpoint inhibitors have clinical success in prolonging the life of many cancer patients. However, only a minority of patients benefit from such therapy, calling for further improvements. Currently, most PD-L1 checkpoint inhibitors in the clinic do not elicit Fc effector mechanisms that would substantially increase their efficacy.
View Article and Find Full Text PDFMol Ther Oncolytics
June 2022
Common vaccines for infectious diseases have been repurposed as cancer immunotherapies. The intratumoral administration of these repurposed vaccines can induce immune cell infiltration into the treated tumor. Here, we have used an approved trivalent live attenuated measles, mumps, and rubella (MMR) vaccine in our previously developed PeptiENV cancer vaccine platform.
View Article and Find Full Text PDFFront Immunol
May 2022
Oncolytic Viruses (OVs) work through two main mechanisms of action: the direct lysis of the virus-infected cancer cells and the release of tumor antigens as a result of the viral burst. In this sc.enario, the OVs act as cancer vaccines, since the immunogenicity of the virus is combined with tumor antigens, that direct the specificity of the anti-tumor adaptive immune response.
View Article and Find Full Text PDFBesides the isolation and identification of major histocompatibility complex I-restricted peptides from the surface of cancer cells, one of the challenges is eliciting an effective antitumor CD8+ T-cell-mediated response as part of therapeutic cancer vaccine. Therefore, the establishment of a solid pipeline for the downstream selection of clinically relevant peptides and the subsequent creation of therapeutic cancer vaccines are of utmost importance. Indeed, the use of peptides for eliciting specific antitumor adaptive immunity is hindered by two main limitations: the efficient selection of the most optimal candidate peptides and the use of a highly immunogenic platform to combine with the peptides to induce effective tumor-specific adaptive immune responses.
View Article and Find Full Text PDFIdentification of HLA class I ligands from the tumor surface (ligandome or immunopeptidome) is essential for designing T-cell mediated cancer therapeutic approaches. However, the sensitivity of the process for isolating MHC-I restricted tumor-specific peptides has been the major limiting factor for reliable tumor antigen characterization, making clear the need for technical improvement. Here, we describe our work from the fabrication and development of a microfluidic-based chip (PeptiCHIP) and its use to identify and characterize tumor-specific ligands on clinically relevant human samples.
View Article and Find Full Text PDFBackground: Despite the success of immune checkpoint inhibitors against PD-L1 in the clinic, only a fraction of patients benefit from such therapy. A theoretical strategy to increase efficacy would be to arm such antibodies with Fc-mediated effector mechanisms. However, these effector mechanisms are inhibited or reduced due to toxicity issues since PD-L1 is not confined to the tumor and also expressed on healthy cells.
View Article and Find Full Text PDFKnowledge of clinically targetable tumor antigens is becoming vital for broader design and utility of therapeutic cancer vaccines. This information is obtained reliably by directly interrogating the MHC-I presented peptide ligands, the immunopeptidome, with state-of-the-art mass spectrometry. Our manuscript describes direct identification of novel tumor antigens for an aggressive triple-negative breast cancer model.
View Article and Find Full Text PDFJ Immunother Cancer
July 2021
Background: Intratumoral BCG therapy, one of the earliest immunotherapies, can lead to infiltration of immune cells into a treated tumor. However, an increase in the number of BCG-induced tumor-specific T cells in the tumor microenvironment could lead to enhanced therapeutic effects.
Methods: Here, we have developed a novel cancer vaccine platform based on BCG that can broaden BCG-induced immune responses to include tumor antigens.
Bacterial biofilms are an important underlying cause for chronic infections. By switching into the biofilm state, bacteria can evade host defenses and withstand antibiotic chemotherapy. Despite the fact that biofilms at clinical and environmental settings are mostly composed of multiple microbial species, biofilm research has largely been focused on single-species biofilms.
View Article and Find Full Text PDFCancer Immunol Res
August 2021
Molecular mimicry is one of the leading mechanisms by which infectious agents can induce autoimmunity. Whether a similar mechanism triggers an antitumor immune response is unexplored, and the role of antiviral T cells infiltrating the tumor has remained anecdotal. To address these questions, we first developed a bioinformatic tool to identify tumor peptides with high similarity to viral epitopes.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
March 2021
Oncolytic adenoviruses have become ideal agents in the path toward treating cancer. Such viruses have been engineered to conditionally replicate in malignant cells in which certain signaling pathways have been disrupted. Other than such oncolytic properties, the viruses need to activate the immune system in order to sustain a long-term response.
View Article and Find Full Text PDFAdv Healthc Mater
September 2020
Biohybrid nanosystems represent the cutting-edge research in biofunctionalization of micro- and nano-systems. Their physicochemical properties bring along advantages in the circulation time, camouflaging from the phagocytes, and novel antigens. This is partially a result of the qualitative differences in the protein corona, and the preferential targeting and uptake in homologous cells.
View Article and Find Full Text PDFCancers (Basel)
June 2020
According to the latest available data, cancer is the second leading cause of death, highlighting the need for novel cancer therapeutic approaches. In this context, immunotherapy is emerging as a reliable first-line treatment for many cancers, particularly metastatic melanoma. Indeed, cancer immunotherapy has attracted great interest following the recent clinical approval of antibodies targeting immune checkpoint molecules, such as PD-1, PD-L1, and CTLA-4, that release the brakes of the immune system, thus reviving a field otherwise poorly explored.
View Article and Find Full Text PDFBecause of the high coverage of international vaccination programs, most people worldwide have been vaccinated against common pathogens, leading to acquired pathogen-specific immunity with a robust memory T-cell repertoire. Although CD8 antitumor cytotoxic T lymphocytes (CTL) are the preferred effectors of cancer immunotherapy, CD4 T-cell help is also required for an optimal antitumor immune response to occur. Hence, we investigated whether the pathogen-related CD4 T-cell memory populations could be reengaged to support the CTLs, converting a weak primary antitumor immune response into a stronger secondary one.
View Article and Find Full Text PDFVirus-based cancer vaccines are nowadays considered an interesting approach in the field of cancer immunotherapy, despite the observation that the majority of the immune responses they elicit are against the virus and not against the tumor. In contrast, targeting tumor associated antigens is effective, however the identification of these antigens remains challenging. Here, we describe ExtraCRAd, a multi-vaccination strategy focused on an oncolytic virus artificially wrapped with tumor cancer membranes carrying tumor antigens.
View Article and Find Full Text PDF