Single-cell analysis (SCA) improves the detection of cancer, the immune system, and chronic diseases from complicated biological processes. SCA techniques generate high-dimensional, innovative, and complex data, making traditional analysis difficult and impractical. In the different cell types, conventional cell sequencing methods have signal transformation and disease detection limitations.
View Article and Find Full Text PDFMetal-Organic Frameworks (MOFs) have exceptional inherent properties that make them highly suitable for diverse applications, such as catalysis, storage, optics, chemo sensing, and biomedical science and technology. Over the past decades, researchers have utilized various techniques, including solvothermal, hydrothermal, mechanochemical, electrochemical, and ultrasonic, to synthesize MOFs with tailored properties. Post-synthetic modification of linkers, nodal components, and crystallite domain size and morphology can functionalize MOFs to improve their aptamer applications.
View Article and Find Full Text PDFAnal Methods
September 2023
With increasing population there is a rise in pathological diseases that the healthcare facilities are grappling with. Sweat-based wearable technologies for continuous monitoring have overcome the demerits associated with sweat sampling and sensing. Hence, sweat as an alternative biofluid holds great promise for the quantification of a host of biomarkers and understanding the functioning of the body, thereby deducing ailments quickly and economically.
View Article and Find Full Text PDFAptasensors have attracted considerable interest and widespread application in point-of-care testing worldwide. One of the biggest challenges of a point-of-care (POC) is the reduction of treatment time compared to central facilities that diagnose and monitor the applications. Over the past decades, biosensors have been introduced that offer more reliable, cost-effective, and accurate detection methods.
View Article and Find Full Text PDFArch Physiol Biochem
August 2024
Sweat glands (SGs) play a vital role in thermal regulation. The function and structure are altered during the different pathological conditions. These alterations are studied through three techniques: biopsy, sweat analytes and electrical activity of SG.
View Article and Find Full Text PDFBiomed Microdevices
December 2021
Heating plays a vital role in science, engineering, mining, and space, where heating can be achieved via electrical, induction, infrared, or microwave radiation. For fast switching and continuous applications, hotplate or Peltier elements can be employed. However, due to bulkiness, they are ineffective for portable applications or operation at remote locations.
View Article and Find Full Text PDFHumans are subjected to various diseases; hence, proper diagnosis helps avoid further disease consequences. One such severe issue that could cause significant damage to the human liver is the hepatitis C virus (HCV). Several techniques are available to detect HCV under various categories, such as detection through antibodies, antigens, and RNA.
View Article and Find Full Text PDFThe development of passively driven microfluidic labs on chips has been increasing over the years. In the passive approach, the microfluids are usually driven and operated without any external actuators, fields, or power sources. Passive microfluidic techniques adopt osmosis, capillary action, surface tension, pressure, gravity-driven flow, hydrostatic flow, and vacuums to achieve fluid flow.
View Article and Find Full Text PDFPorcupine bezoar (PB) is a calcified undigested material generally found in porcupine's (Hystrix brachyura) gastrointestinal tract. The bezoar is traditionally used in South East Asia and Europe for the treatment of cancer, poisoning, dengue, typhoid, etc. However, limited scientific studies have been performed to verify its anticancer potential to substantiate its traditional claims in the treatment of cancers.
View Article and Find Full Text PDFBioinspir Biomim
November 2019
Cell imprint lithography (CIL) or cell replication plays a vital role in fields like biomimetic smart culture substrates, bone tissue engineering, cell guiding, cell adhesion, tissue engineering, cell microenvironments, tissue microenvironments, cell research, drug delivery, diagnostics, therapeutics and many other applications. Herein we report a new formulation of superconductive carbon black photopolymer composite and its characterization towards a CIL process technique. In this article, we demonstrated an approach of using a carbon nanoparticle-polymer composite (CPC) for patterning cells.
View Article and Find Full Text PDFSkin cancer is the most common form of cancer and is globally rising. Historically, the diagnosis of skin cancers has depended on various conventional techniques which are of an invasive manner. A variety of commercial diagnostic tools and auxiliary techniques are available to detect skin cancer.
View Article and Find Full Text PDF