Publications by authors named "Veno Kononenko"

Microplastics is recognized as an emerging pollutant and adapting and harmonizing existing test methods is essential to advancing research. The aim of our work was to provide a case study on how to ensure quality and FAIR data in the assessment of microplastic hazards with the unicellular organism Tetrahymena thermophila (Protozoa, Ciliata). We selected high density polyethylene (HDPE) microplastics as a model material.

View Article and Find Full Text PDF

Since its first synthesis in 2004, graphene has been widely studied and several different synthesis methods has been developed. Solvent exfoliation of graphite and the reduction of graphene oxide previously obtained through graphite oxidation are the most employed. In this work, we exploited synthesis conditions of a method usually employed for obtaining graphene oxide (the Tour's method) for directly obtaining a very poorly oxidised material with characteristics like reduced graphene oxide.

View Article and Find Full Text PDF

This study demonstrates the potential of gelatin nanoparticles as a nanodelivery system for antagonists of nicotinic acetylcholine receptors (nAChRs) to improve chemotherapy efficacy and reduce off-target effects. Too often, chemotherapy for lung cancer does not lead to satisfactory results. Therefore, new approaches directed at multiple pharmacological targets in cancer therapy are being developed.

View Article and Find Full Text PDF

Nicotine activates nicotinic acetylcholine receptors (nAChRs), which are overexpressed in numerous cancer types, leading to signaling pathways that increase lung cancer invasiveness and resistance to chemotherapeutic agents. In this study, the effects of APS12-2, a synthetic analog of marine sponge toxin that acts as an antagonist of nAChRs, was investigated in vitro on A549 human lung adenocarcinoma cells and non-tumorigenic human lung epithelial BEAS-2B cells. In addition, gelatin nanoparticles (GNPs) loaded with APS12-2 (APS12-2-GNPs) were prepared and their effects were compared with those of free APS12-2.

View Article and Find Full Text PDF

Nicotine binds to nicotinic acetylcholine receptors (nAChRs) that are overexpressed in different cancer cells, promoting tumor growth and resistance to chemotherapy. In this study, we aimed to investigate the potential of APS7-2 and APS8-2, synthetic analogs of a marine sponge toxin, to inhibit nicotine-mediated effects on A549 human lung cancer cells. Our electrophysiological measurements confirmed that APS7-2 and APS8-2 act as α7 nAChR antagonists.

View Article and Find Full Text PDF

Hybrid collagen (Coll) bioscaffolds have emerged as a promising solution for tissue engineering (TE) and regenerative medicine. These innovative bioscaffolds combine the beneficial properties of Coll, an important structural protein of the extracellular matrix, with various other biomaterials to create platforms for long-term cell growth and tissue formation. The integration or cross-linking of Coll with other biomaterials increases mechanical strength and stability and introduces tailored biochemical and physical factors that mimic the natural tissue microenvironment.

View Article and Find Full Text PDF

The obvious benefits derived from the increasing use of engineered nano-, new, and advanced materials and associated products have to be weighed out by a governance process against their possible risks. Differences in risk perception (beliefs about potential harm) among stakeholders, in particular nonscientists, and low transparency of the underlying decision processes can lead to a lack of support and acceptance of nano-, new, and other advanced material enabled products. To integrate scientific outcomes with stakeholders needs, this work develops a new approach comprising a nine-level, stepwise categorization and guidance system entitled "Knowledge, Information, and Data Readiness Levels" (KaRLs), analogous to the NASA Technology Readiness Levels.

View Article and Find Full Text PDF

We studied inflammatory and oxidative stress-related parameters and cytotoxic response of human umbilical vein endothelial cells (HUVEC) to a 24 h treatment with milled particles simulating debris involved in sandblasting of orthopedic implants (OI). We used different abrasives (corundum-(AlO), used corundum retrieved from removed OI (u. AlO), and zirconia/silica composite (ZrO/SiO)).

View Article and Find Full Text PDF

The hematopoietic stem cell (HSC) niche undergoes detrimental changes with age. The molecular differences between young and old niches are well studied and understood; however, young and old niches have not yet been extensively characterized in terms of morphology. In the present work, a 2D stromal model of young and old HSC niches isolated from bone marrow was investigated using light and scanning electron microscopy (SEM) to characterize cell density after one, two, or three weeks of culturing, cell shape, and cell surface morphological features.

View Article and Find Full Text PDF

Dialdehyde cellulose nanofibrils (CNF) and nanocrystals (CNC) were prepared via periodate oxidation (CNF/CNC-ox) and subsequently functionalized with hexamethylenediamine (HMDA) via a Schiff-base reaction, resulting in partially crosslinked micro-sized (0.5-10 μm) particles (CNF/CNC-ox-HMDA) with an aggregation and sedimentation tendency in an aqueous media, as assessed by Dynamic Light Scattering and Scanning Electron Microscopy. The antibacterial efficacy, aquatic in vivo (to Daphnia magna) and human in vitro (to A594 lung cells) toxicities, and degradation profiles in composting soil of all forms of CNF/CNC were assessed to define their safety profile.

View Article and Find Full Text PDF

In our study, plasma surface modification was employed to tailor the surface properties of magnesium in terms of surface chemistry, topography, and wettability. For two sets of samples, the plasma treatment involved two steps using two different gases (hydrogen and oxygen), while one set of samples was treated with one step only using oxygen. X-ray photoelectron spectroscopy (XPS) was applied to determine the surface composition, oxidation state of the elements, and the thickness of the surface oxide layer on the Mg samples after different plasma treatments.

View Article and Find Full Text PDF

Electrochemical-based biosensors have the potential to be a fast, label-free, simple approach to detecting the effects of cytotoxic substances in liquid media. In the work presented here, a cell-based electrochemical biosensor was developed and evaluated to detect the cytotoxic effects of Zn ions in a solution as a reference test chemical. A549 cells were attached to the surface of stainless-steel electrodes.

View Article and Find Full Text PDF

Poorly soluble, low (cyto)toxic particles (PSLTs) are often regarded as one group, but it is important that these particles can be further differentiated based on their bioactivity. Currently, there are no biological endpoint based groupings for inhaled nanoparticles (NPs) that would allow us to subgroup PSLTs based on their mode of action. The aim of this study was to group NPs based on their cytotoxicity and by using the in vitro response of the endo-lysosomal system as a biological endpoint.

View Article and Find Full Text PDF

The use of titanium suboxides, known as Magnéli phase TiO, is expected to increase in the near future due to their desirable properties. In order to use Magnéli phase TiO nanoparticles safely, it is necessary to know how nanoparticles interact with biological systems. In this study, the cytotoxicity of three different Magnéli TiO nanoparticles was evaluated using human lung A549 cells and the results were compared with hazard data on two different TiO₂ nanoparticles whose biological interactions have already been extensively studied.

View Article and Find Full Text PDF

The pulmonary delivery of nanoparticles (NPs) is a promising approach in nanomedicine. For the efficient and safe use of inhalable NPs, understanding of NP interference with lung surfactant metabolism is needed. Lung surfactant is predominantly a phospholipid substance, synthesized in alveolar type II cells (ATII), where it is packed in special organelles, lamellar bodies (LBs).

View Article and Find Full Text PDF

Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO sub-micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd-doped TiO exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin-lattice and spin-spin relaxation times.

View Article and Find Full Text PDF

In the present study, we evaluated the roles that ZnO particle size and Zn ion release have on cyto- and genotoxicity in vitro. The Madin-Darby canine kidney (MDCK) cells were treated with ZnO nanoparticles (NPs), ZnO macroparticles (MPs), and ZnCl as a source of free Zn ions. We first tested cytotoxicity to define sub-cytotoxic exposure concentrations and afterwards we performed alkaline comet and cytokinesis-block micronucleus assays.

View Article and Find Full Text PDF

The applications of zinc oxide (ZnO) nanowires (NWs) in implantable wireless devices, such as diagnostic nanobiosensors and nanobiogenerators, have recently attracted enormous attention due to their unique properties. However, for these implantable nanodevices, the biocompatibility and the ability to control the behaviour of cells in contact with ZnO NWs are demanded for the success of these implantable devices, but to date, only a few contrasting results from their biocompatibility can be found. There is a need for more research about the biocompatibility of ZnO nanostructures and the adhesion and viability of cells on the surface of ZnO nanostructures.

View Article and Find Full Text PDF

When nanoparticles enter the body, their interactions with cells are almost unavoidable. Unintended nanoparticle interaction with immune cells may elicit a molecular response that can have toxic effects and lead to greater susceptibility to infectious diseases, autoimmune disorders, and cancer development. As evidenced by several studies, nanoparticle interactions with biological systems can stimulate inflammatory or allergic reactions and activate the complement system.

View Article and Find Full Text PDF

Background: We studied the effect of carbon black (CB) agglomerated nanomaterial on biological membranes as revealed by shapes of human erythrocytes, platelets and giant phospholipid vesicles. Diluted human blood was incubated with CB nanomaterial and observed by different microscopic techniques. Giant unilamellar phospholipid vesicles (GUVs) created by electroformation were incubated with CB nanomaterial and observed by optical microscopy.

View Article and Find Full Text PDF