Since its first synthesis in 2004, graphene has been widely studied and several different synthesis methods has been developed. Solvent exfoliation of graphite and the reduction of graphene oxide previously obtained through graphite oxidation are the most employed. In this work, we exploited synthesis conditions of a method usually employed for obtaining graphene oxide (the Tour's method) for directly obtaining a very poorly oxidised material with characteristics like reduced graphene oxide.
View Article and Find Full Text PDFDetermining the potential for accumulation of Ag from AgS NPs as an environmentally relevant form of AgNPs in different terrestrial organisms is an essential component of a realistic risk assessment of AgNP emissions to soils. The objectives of this study were first to determine the uptake kinetics of Ag in mealworms (Tenebrio molitor) and woodlice (Porcellio scaber) exposed to AgS NPs in a mesocosm test, and second, to check if the obtained toxicokinetics could be predicted by single-species bioaccumulation tests. In the mesocosms, mealworms and woodlice were exposed together with plants and earthworms in soil columns spiked with 10 μg Ag g dry soil as AgS NPs or AgNO.
View Article and Find Full Text PDFMesocosms allow the simulation of environmentally relevant conditions and can be used to establish more realistic scenarios of organism exposure to nanoparticles. An indoor mesocosm experiment simulating an aquatic stream ecosystem was conducted to assess the toxicokinetics and bioaccumulation of silver sulfide nanoparticles (AgS NPs) and AgNO in the freshwater invertebrates Girardia tigrina, Physa acuta and Chironomus riparius, and determine if previous single-species tests can predict bioaccumulation in the mesocosm. Water was daily spiked at 10 μg Ag L.
View Article and Find Full Text PDFDue to miscommunication a number of potential co-authors were not listed in the original publication [...
View Article and Find Full Text PDFSci Total Environ
December 2022
The fate of engineered nanomaterials in ecosystems is unclear. An aquatic stream mesocosm explored the fate and bioaccumulation of silver sulfide nanoparticles (AgS NPs) compared to silver nitrate (AgNO). The aims were to determine the total Ag in water, sediment and biota, and to evaluate the bioavailable fractions of silver in the sediment using a serial extraction method.
View Article and Find Full Text PDFACEnano is an EU-funded project which aims at developing, optimising and validating methods for the detection and characterisation of nanomaterials (NMs) in increasingly complex matrices to improve confidence in the results and support their use in regulation. Within this project, several interlaboratory comparisons (ILCs) for the determination of particle size and concentration have been organised to benchmark existing analytical methods. In this paper the results of a number of these ILCs for the characterisation of NMs are presented and discussed.
View Article and Find Full Text PDFIn the field of nanotechnology, analytical characterization plays a vital role in understanding the behavior and toxicity of nanomaterials (NMs). Characterization needs to be thorough and the technique chosen should be well-suited to the property to be determined, the material being analyzed and the medium in which it is present. Furthermore, the instrument operation and methodology need to be well-developed and clearly understood by the user to avoid data collection errors.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2018
Si-based high-capacity materials have gained much attention as an alternative to graphite in Li-ion battery anodes. Although Si additions to graphite anodes are now commercialized, the fraction of Si that can be usefully exploited is restricted due to its poor cyclability arising from the large volume changes during charge/discharge. Si/SiO nanocomposites have also shown promising behavior, such as better capacity retention than Si alone because the amorphous SiO helps to accommodate the volume changes of the Si.
View Article and Find Full Text PDFMethods for chemical surface functionalization for carbon black (CB) nanoparticles were studied to produce (CB)/polypropylene (PP) nanocomposites with superior electrical and thermal properties. Nanoparticle dispersion is known to directly control the extent to which nanocomposites maximize the unique attributes of their nanoscale fillers. As a result, tailored nanoparticle surface chemistry is a widely utilized method to enhance the interfacial interactions between nanoparticles and polymer matrices, assisting improved filler dispersion.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are widely used worldwide, most likely leading to their release into the environment and a subsequent increase of environmental concentrations. Studies of their deleterious effects on organisms is crucial to understand their environmental impacts. The freshwater snail Physa acuta was chosen to evaluate the potential deleterious effects of AgNPs and their counterpart AgNO , through water-only exposures.
View Article and Find Full Text PDFSilver nanoparticles (Ag NPs) have been used in numerous consumer products and may enter the soil through the land application of biosolids. However, little is known about the relationship between Ag NP exposure and their bioavailability for soil organisms. This study aims at comparing the uptake and elimination kinetics of Ag upon exposures to different Ag forms (NPs and ionic Ag (as AgNO3)) in the isopod Porcellionides pruinosus.
View Article and Find Full Text PDFNanoparticles are prone to clustering either via aggregation (irreversible) or agglomeration (reversible) processes. It is exceedingly difficult to distinguish the two via conventional techniques such as dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), or electron microscopy imaging (scanning electron microscopy (SEM), transmission electron microscopy (TEM)) as such techniques only generally confirm the presence of large particle clusters. Herein we develop a joint approach to tackle the issue of distinguishing between nanoparticle aggregation vs agglomeration by characterizing a colloidal system of Ag NPs using DLS, NTA, SEM imaging and the electrochemical nanoimpacts technique.
View Article and Find Full Text PDFThe application of nanoparticles (NPs) in consumer products has been increasing over the past few years. Their release into the environment is likely to happen at any stage of production or during the use of products containing NPs. Zinc oxide NPs (ZnO-NP) are among the most-used NPs on the market due to its intrinsic properties, such as ultraviolet (UV) absorption.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2016
Silver nanoparticles (AgNP) are currently defined as emerging pollutants in surface water ecosystems. Whether the toxic effects of AgNP towards freshwater organisms are fully explainable by the release of ionic silver (Ag(+)) has not been conclusively elucidated. Long-term effects to benthic microbial communities (periphyton) that provide essential functions in stream ecosystems are unknown.
View Article and Find Full Text PDFThe effects of Ag-NPs and AgNO3 on the isopod Porcellionides pruinosus were determined upon soil and dietary exposures. Isopods avoided Ag in soil, with EC50 values of ∼16.0 and 14.
View Article and Find Full Text PDFEnviron Toxicol Chem
October 2015
Current bioavailability models, such as the free ion activity model and biotic ligand model, explicitly consider that metal exposure will be mainly to the dissolved metal in ionic form. With the rise of nanotechnology products and the increasing release of metal-based nanoparticles (NPs) to the environment, such models may increasingly be applied to support risk assessment. It is not immediately clear, however, whether the assumption of metal ion exposure will be relevant for NPs.
View Article and Find Full Text PDFEnviron Pollut
August 2015
This study investigated if standard risk assessment hazard tests are long enough to adequately provide the worst case exposure for nanomaterials. This study therefore determined the comparative effects of the aging on the bioavailability and toxicity to earthworms of soils dosed with silver ions and silver nanoparticles (Ag NP) for 1, 9, 30 & 52 weeks, and related this to the total Ag in the soil, Ag in soil pore water and earthworm tissue Ag concentrations. For ionic Ag, a classical pattern of reduced bioavailability and toxicity with time aged in the soil was observed.
View Article and Find Full Text PDFThe study was designed to conduct human in vivo and in vitro studies on the gastrointestinal absorption of nanoparticles, using titanium dioxide as a model compound, and to compare nanoparticle behaviour with that of larger particles. A supplier's characterisation data may not fully describe a particle formulation. Most particles tested agreed with their supplied characterisation when assessed by particle number but significant proportions of 'nanoparticle formulations' were particles >100nm when assessed by particle weight.
View Article and Find Full Text PDFThe influence of capping agents on the oxidation of silver nanoparticles was studied by using the electrochemical techniques of anodic stripping voltammetry and anodic particle coulometry ("nano-impacts"). Five spherical silver nanoparticles each with a different capping agent (branched polyethylenimine (BPEI), citrate, lipoic acid, polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP)) were used to perform comparative experiments. In all cases, regardless of the capping agent, complete oxidation of the single nanoparticles was seen in anodic particle coulometry.
View Article and Find Full Text PDFInitiatives to support the sustainable development of the nanotechnology sector have led to rapid growth in research on the environmental fate, hazards and risk of engineered nanoparticles (ENP). As the field has matured over the last 10Â years, a detailed picture of the best methods to track potential forms of exposure, their uptake routes and best methods to identify and track internal fate and distributions following assimilation into organisms has begun to emerge. Here we summarise the current state of the field, focussing particularly on metal and metal oxide ENPs.
View Article and Find Full Text PDFCerium oxide nanoparticles (CeO2 NPs) are used as diesel fuel additives to catalyze oxidation. Phenanthrene is a major component of diesel exhaust particles and one of the most common pollutants in the environment. This study aimed at determining the effect of CeO2 NPs on the toxicity of phenanthrene in Lufa 2.
View Article and Find Full Text PDFAim of this study was to describe the toxicity of a set of different commercially available silver nanoparticles (AgNPs) to the gram-negative bacterium Pseudomonas putida (growth inhibition assay, ISO 10712) in order to contribute to their environmental hazard and risk assessment. Different AgNP sizes and coatings were selected in order to analyze whether those characteristics are determinants of nanoparticle toxicity. Silver nitrate was tested for comparison.
View Article and Find Full Text PDFAnodic particle coloumetry is used to size silver nanoparticles impacting a carbon microelectrode in a potassium chloride/citrate solution. Besides their size, their agglomeration state in solution is also investigated solely by electrochemical means and subsequent data analysis. Validation of this new approach to nanoparticle agglomeration studies is performed by comparison with the results of a commercially available nanoparticle tracking analysis system, which shows excellent agreement.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
March 2014
Zinc oxide nanoparticles (ZnONPs) are used in large quantities by the cosmetic, food and textile industries. Here we exposed Caenorhabditis elegans wild-type and a metal sensitive triple knockout mutant (mtl-1;mtl-2;pcs-1) to ZnONPs (0-50mg/L) to study strain and exposure specific effects on transcription, reactive oxygen species generation, the biomolecular phenotype (measured by Raman microspectroscopy) and key endpoints of the nematode life cycle (growth, reproduction and lifespan). A significant dissolution effect was observed, where dissolved ZnO constituted over 50% of total Zn within a two day exposure to the test medium, suggesting that the nominal exposure to pure ZnONPs represents in vivo, at best, a mixture exposure of ionic zinc and nanoparticles.
View Article and Find Full Text PDF