Publications by authors named "Vasudharani Devanathan"

Neuroinflammation and altered neurite outgrowth are pivotal pathological characteristic features of neurodegenerative disorders. Our research aims to explore the potential anti-neuroinflammatory activity of palmitic acid derived from Cissus quadrangularis. Our results reveal that palmitic acid at low concentrations significantly attenuates neuroinflammation in Neuro-2a cells by suppressing the expression of TNF-α and RhoA GTPase.

View Article and Find Full Text PDF

Neutrophils are not only involved in immune defense against infection but also contribute to the exacerbation of tissue damage after ischemia and reperfusion. We have previously shown that genetic ablation of regulatory Gα proteins in mice has both protective and deleterious effects on myocardial ischemia reperfusion injury (mIRI), depending on which isoform is deleted. To deepen and analyze these findings in more detail the contribution of Gα proteins in resident cardiac vs circulating blood cells for mIRI was first studied in bone marrow chimeras.

View Article and Find Full Text PDF

Neurotransmitters serve as chemical messengers playing a crucial role in information processing throughout the nervous system, and are essential for healthy physiological and behavioural functions in the body. Neurotransmitter systems are classified as cholinergic, glutamatergic, GABAergic, dopaminergic, serotonergic, histaminergic, or aminergic systems, depending on the type of neurotransmitter secreted by the neuron, allowing effector organs to carry out specific functions by sending nerve impulses. Dysregulation of a neurotransmitter system is typically linked to a specific neurological disorder.

View Article and Find Full Text PDF

Since the COVID-19 pandemic started in December 2019, there have been several reports of patients succumbing to neurological complications. Early reports were suggestive of a possibility, while by early 2020 it was clearly evident that although SARS-CoV-2 primarily attacks the respiratory system, the brain is one of the most affected organs post-recovery. Although it may be premature to comment on the long-term effects of COVID-19 in brain, some reliable predictions can be made based on the data currently available.

View Article and Find Full Text PDF

Recently Chloroquine and its derivative Hydroxychloroquine have garnered enormous interest amongst the clinicians and health authorities' world over as a potential treatment to contain COVID-19 pandemic. The present research aims at investigating the therapeutic potential of Chloroquine and its potent derivative Hydroxychloroquine against SARS-CoV-2 viral proteins. At the same time screening was performed for some chemically synthesized derivatives of Chloroquine and compared their binding efficacy with chemically synthesized Chloroquine derivatives through approaches.

View Article and Find Full Text PDF

Introduction: Rigorous research in the last few years has shown that in addition to the classical mechanism of neurodegeneration, certain unconventional mechanisms may also lead to neurodegenerative disease. One of them is a widely studied metabolic disorder: type 2 diabetes mellitus (T2DM). We now have a clear understanding of glucose-mediated neurodegeneration, mostly from studies in Alzheimer's disease (AD) models.

View Article and Find Full Text PDF

Pertussis toxin (PTX) is a potent virulence factor in patients suffering from whooping cough, but in its detoxified version, it is applied for vaccination. It is thought to contribute to the pathology of the disease including various CNS malfunctions. Based on its enzymatic activity, PTX disrupts GPCR-dependent signaling by modifying the α-subunit of heterotrimeric G-proteins.

View Article and Find Full Text PDF

Spinal cord injury (SCI) involves damage to any part of the spinal cord which results in temporary or permanent changes in its function. Spinal cord secondary injury activates Rho-associated protein kinase 2 (ROCK2), which is involved in neuroinflammation and cell death by mediating secretion of inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1 beta (IL-1β), interleukin-2 (IL-2), and CXC chemokines. Here we evaluated potential inhibitors of ROCK2, Caspase-1, and TNF-α from derived natural compounds and compared them with structural analogues of quadrangularin by molecular docking, followed by correlation using molecular dynamic simulations studies.

View Article and Find Full Text PDF

Culture of adult neurons of the central nervous system (CNS) can provide a unique model system to explore neurodegenerative diseases. The CNS includes neurons and glia of the brain, spinal cord and retina. Neurons in the retina have the advantage of being the most accessible cells of the CNS, and can serve as a reliable mirror to the brain.

View Article and Find Full Text PDF

Diabetic retinopathy (DR) is a devastating complication of diabetes with a prevalence rate of 35%, and no effective treatment options. Since the most visible clinical features of DR are microvascular irregularities, therapeutic interventions often attempt to reduce microvascular injury, but only after permanent retinal damage has ensued. However, recent data suggests that diabetes initially affects retinal neurons, leading to neurodegeneration as an early occurrence in DR, before onset of the more noticeable vascular abnormalities.

View Article and Find Full Text PDF

Myocardial ischemia/reperfusion (I/R) injury is the major problem that aggravates cardiac damage. Several established animal models fail to explain the similarity in disease mechanism and progression as seen in humans; whereas guinea pig shows high similarity in cardiovascular parameters. Hence, current study is aimed to develop an animal model using guinea pigs that may best correlate with disease mechanism of human myocardial I/R injury.

View Article and Find Full Text PDF

Platelets are crucial for hemostasis and thrombosis and exacerbate tissue injury following ischemia and reperfusion. Important regulators of platelet function are G proteins controlled by seven transmembrane receptors. The Gi protein Gα(i2) mediates platelet activation in vitro, but its in vivo role in hemostasis, arterial thrombosis, and postischemic infarct progression remains to be determined.

View Article and Find Full Text PDF

Acute inflammation is the pathophysiological basis of important clinical conditions associated with organ failure. The initial inflammatory response is controlled by the chemokine system, yet recent data have indicated that the neuronal guidance cues are significantly involved in the orchestration of this process. Previous work has shown the proinflammatory capacity of the guidance cue semaphorin (Sema) 7a, but the role of one of its target receptors, the plexin C1 (PLXNC1) receptor is to date unknown.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) are the most abundant receptors in the heart and therefore are common targets for cardiovascular therapeutics. The activated GPCRs transduce their signals via heterotrimeric G-proteins. The four major families of G-proteins identified so far are specified through their α-subunit: Gαi, Gαs, Gαq and G12/13.

View Article and Find Full Text PDF

Background: RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions.

Results: Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice.

Conclusion: Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions.

View Article and Find Full Text PDF

The 5'-adenosine monophosphate-activated serine/threonine protein kinase (AMPK) is stimulated by energy depletion, increase in cytosolic Ca(2+) activity, oxidative stress, and nitric oxide. AMPK participates in the regulation of the epithelial Na(+) channel ENaC and the voltage-gated K(+) channel KCNE1/KCNQ1. It is partially effective by decreasing PIP(2) formation through the PI3K pathway.

View Article and Find Full Text PDF

Extension of axonal and dendritic processes in the CNS is tightly regulated by outgrowth-promoting and -inhibitory cues to assure precision of synaptic connections. We identify a novel role for contactin-associated protein (Caspr) as an inhibitory cue that reduces neurite outgrowth from CNS neurons. We show that proteolysis of Caspr at the cell surface is regulated by the cellular form of prion protein (PrP), which directly binds to Caspr.

View Article and Find Full Text PDF