Publications by authors named "Igor Jakovcevski"

Alzheimer's disease (AD) is a severe neurodegenerative disorder and the most common form of dementia, causing the loss of cognitive function. Our previous study has shown, using a doubly mutated mouse model of AD (APP/PS1), that the neural adhesion molecule L1 directly binds amyloid peptides and decreases plaque load and gliosis when injected as an adeno-associated virus construct (AAV-L1) into APP/PS1 mice. In this study, we microinjected AAV-L1, using a Hamilton syringe, directly into the 3-month-old APP/PS1 mouse hippocampus and waited for a year until significant neurodegeneration developed.

View Article and Find Full Text PDF

Neuronal plasticity is a crucial mechanism for an adapting nervous system to change. It is shown to be regulated by perineuronal nets (PNNs), the condensed forms of the extracellular matrix (ECM) around neuronal bodies. By assessing the changes in the number, intensity, and structure of PNNs, the ultrastructure of the PNN mesh, and the expression of inhibitory and excitatory synaptic inputs on these neurons, we aimed to clarify the role of an ECM glycoprotein, tenascin-C (TnC), in the dorsal hippocampus.

View Article and Find Full Text PDF

The X-chromosome-linked cell adhesion molecule L1 (L1CAM), a glycoprotein mainly expressed by neurons in the central and peripheral nervous systems, has been implicated in many neural processes, including neuronal migration and survival, neuritogenesis, synapse formation, synaptic plasticity and regeneration. L1 consists of extracellular, transmembrane and cytoplasmic domains. Proteolytic cleavage of L1's extracellular and transmembrane domains by different proteases generates several L1 fragments with different functions.

View Article and Find Full Text PDF

Introduction: There is an increasing evidence supporting the hypothesis that traumatic experiences during early developmental periods might be associated with psychopathology later in life. Maternal deprivation (MD) in rodents has been proposed as an animal model for certain aspects of neuropsychiatric disorders.

Methods: To determine whether early-life stress leads to changes in GABAergic, inhibitory interneurons in the limbic system structures, specifically the amygdala and nucleus accumbens, 9-day-old Wistar rats were exposed to a 24 h MD.

View Article and Find Full Text PDF

Adhesion molecules play major roles in cell proliferation, migration, survival, neurite outgrowth and synapse formation during nervous system development and in adulthood. The neural cell adhesion molecule L1 contributes to these functions during development and in synapse formation and synaptic plasticity after trauma in adulthood. Mutations of L1 in humans result in L1 syndrome, which is associated with mild-to-severe brain malformations and mental disabilities.

View Article and Find Full Text PDF

Early life stress negatively impacts brain development and affects structure and function of parvalbumin immunopositive (PV+) inhibitory neurons. Main regulators of PV+ interneurons activity and plasticity are perineuronal nets (PNNs), an extracellular matrix formation that enwraps PV+ interneurons mainly in the neocortex and hippocampus. To experimentally address the impact of early life stress on the PNNs and PV+ interneurons in the medial prefrontal cortex and dorsal hippocampus in rats, we employed a 24 h maternal deprivation protocol.

View Article and Find Full Text PDF

Understanding processes that occur after injuries to the central nervous system is essential in order to gain insight into how the restoration of function can be improved. Extracellular glycoprotein tenascin-C (TnC) has numerous functions in wound healing process depending on the expression time, location, isoform and binding partners which makes it interesting to study in this context. We used an injury model, the mixed culture of cortical astrocytes and microglia, and observed that without TnC microglial cells tend to populate gap area in greater numbers and proliferate more, whereas astrocytes build up in the border region to promote faster gap closure.

View Article and Find Full Text PDF

The role that the immune system plays after injury of the peripheral nervous system is still not completely understood. Perforin, a natural killer cell- and T-lymphocyte-derived enzyme that mediates cytotoxicity, plays important roles in autoimmune diseases, infections and central nervous system trauma, such as spinal cord injury. To dissect the roles of this single component of the immune response to injury, we tested regeneration after femoral nerve injury in perforin-deficient (Pfp) and wild-type control mice.

View Article and Find Full Text PDF

The development of the cerebral cortex relies on the controlled division of neural stem and progenitor cells. The requirement for precise spatiotemporal control of proliferation and cell fate places a high demand on the cell division machinery, and defective cell division can cause microcephaly and other brain malformations. Cell-extrinsic and -intrinsic factors govern the capacity of cortical progenitors to produce large numbers of neurons and glia within a short developmental time window.

View Article and Find Full Text PDF

Reelin is a large secreted glycoprotein that regulates neuronal migration, lamination and establishment of dendritic architecture in the embryonic brain. Reelin expression switches postnatally from Cajal-Retzius cells to interneurons. However, reelin function in interneuron development is still poorly understood.

View Article and Find Full Text PDF

Early life stress has profound effects on the development of the central nervous system. We exposed 9-day-old rat pups to a 24 h maternal deprivation (MD) and sacrificed them as young adults (60-day-old), with the aim to study the effects of early stress on forebrain circuitry. We estimated numbers of various immunohistochemically defined interneuron subpopulations in several neocortical regions and in the hippocampus.

View Article and Find Full Text PDF
Article Synopsis
  • Extracellular matrix glycoprotein tenascin-C (TnC) is important for embryonic development and tissue regeneration after injury, particularly during spinal cord injuries, and is secreted mainly by astrocytes.
  • The study examined how different domains of TnC affect astrocyte behavior, finding that TnC fragments can delay gap closure and decrease proliferation of astrocytes, especially with fragments FnD and FnA.
  • TnC-deficient astrocytes showed increased GFAP expression and altered inflammatory responses compared to wild-type, suggesting TnC plays a critical role in modulating astrocyte activity and the inflammatory response after spinal cord injury.
View Article and Find Full Text PDF

Peripheral nerve injuries are common and present with a broad spectrum of symptoms, some of which may be the cause of life-long disabilities. The peripheral nerves show a far greater capacity for regeneration than those in the central nervous system, and the process of nerve regeneration resembles developmental processes to a certain degree. The regeneration of peripheral nerves does not always lead to a full functional recovery.

View Article and Find Full Text PDF

Microglia/macrophages play important functional roles in regeneration after central nervous system injury. Infiltration of circulating macrophages and proliferation of resident microglia occur within minutes following spinal cord injury. Activated microglia/macrophages clear tissue debris, but activation over time may hamper repair.

View Article and Find Full Text PDF

Materials And Methods: Locomotor outcomes in perforin-deficient (Pfp-/-) mice and wild-type littermate controls were measured after severe compression injury of the lower thoracic spinal cord up to six weeks after injury.

Results: According to both the Basso mouse scale score and single frame motion analysis, motor recovery of Pfp-/- mice was similar to wild-type controls. Interestingly, immunohistochemical analysis of cell types at six weeks after injury showed enhanced cholinergic reinnervation of spinal motor neurons caudal to the lesion site and neurofilament-positive structures at the injury site in Pfp-/- mice, whereas numbers of microglia/macrophages and astrocytes were decreased compared with controls.

View Article and Find Full Text PDF

Background: Microglia are essential to maintain cell homeostasis in the healthy brain and are activated after brain injury. Upon activation, microglia polarize towards different phenotypes. The course of microglia activation is complex and depends on signals in the surrounding milieu.

View Article and Find Full Text PDF

Background: We have shown that histone H1 is a binding partner for polysialic acid (PSA) and that it improves functional recovery, axon regrowth/sprouting, and target reinnervation after mouse femoral nerve injury.

Objective: Here, we analyzed whether histone H1 affects functional recovery, axon regrowth/sprouting, and target reinnervation after spinal cord injury of adult mice. Furthermore, we tested in vitro histone H1's effect on astrocytic gene expression, cell shape and migration as well as on cell survival of cultured motoneurons.

View Article and Find Full Text PDF
Article Synopsis
  • Brain functions are highly sensitive to changes in pH due to the role of proteins in neuron activity.
  • Researchers studied the Na+/H+ exchanger Nhe1 in mice, focusing on its disruption in two types of neurons—glutamatergic and GABAergic.
  • Disruption of Nhe1 in GABAergic interneurons led to epileptic activity, indicating that Nhe1 affects neuronal network excitability by modifying inhibitory signaling.
View Article and Find Full Text PDF

The close homolog of L1 (CHL1) is a cell adhesion molecule involved in regulation of neuronal differentiation and survival, neurite outgrowth and axon guidance during development. In the mature nervous system, CHL1 regulates synaptic activity and plasticity. The aim of the present study was to evaluate the influence of CHL1 on peripheral nerve regeneration after trauma.

View Article and Find Full Text PDF

The nervous system is a notable exception to the rule that the cell is the structural and functional unit of tissue systems and organs. The functional unit of the nervous system is the synapse, the contact between two nerve cells. As such, synapses are the foci of investigations of nervous system organization and function, as well as a potential readout for the progression of various disorders of the nervous system.

View Article and Find Full Text PDF

Objective: Maternal obesity and a disturbed metabolic environment during pregnancy and lactation have been shown to result in many long-term health consequences for the offspring. Among them, impairments in neurocognitive development and performance belong to the most dreaded ones. So far, very few mechanistic approaches have aimed to determine the responsible molecular events.

View Article and Find Full Text PDF