Publications by authors named "Valeria Bisio"

The human bone marrow (BM) microenvironment involves hematopoietic and non-hematopoietic cell subsets organized in a complex architecture. Tremendous efforts have been made to model it in order to analyze normal or pathological hematopoiesis and its stromal counterpart. Herein, we report an original, fully-human in vitro 3D model of the BM microenvironment dedicated to study interactions taking place between mesenchymal stromal cells (MSC) and hematopoietic stem and progenitor cells (HSPC) during the hematopoietic differentiation.

View Article and Find Full Text PDF

Despite the advances in the understanding and treatment of myeloproliferative neoplasm (MPN), the disease remains incurable with the risk of evolution to acute myeloid leukemia or myelofibrosis (MF). Unfortunately, the evolution of the disease to MF remains poorly understood, impeding preventive and therapeutic options. Recent studies in solid tumor microenvironment and organ fibrosis have shed instrumental insights on their respective pathogenesis and drug resistance, yet such precise data are lacking in MPN.

View Article and Find Full Text PDF

Background: Twenty percent of children with hepatoblastoma (HB) have lung metastasis at diagnosis. Treatment protocols recommend surgical removal of chemotherapy-refractory lung nodules, however no chronological order is established. As hepatectomy is followed by release of growth factors, it has been proposed that partial hepatectomy (PH) could boost local or distant residual tumor growth.

View Article and Find Full Text PDF

WHIM Syndrome is a rare immunodeficiency caused by gain-of-function CXCR4 mutations. Here we report a decrease in bone mineral density in 25% of WHIM patients and bone defects leading to osteoporosis in a WHIM mouse model. Imbalanced bone tissue is observed in mutant mice combining reduced osteoprogenitor cells and increased osteoclast numbers.

View Article and Find Full Text PDF

Myelodysplastic syndromes (MDS) are clonal hematopoietic disorders, representing high risk of progression to acute myeloid leukaemia, and frequently associated to somatic mutations, notably in the epigenetic regulator TET2. Natural Killer (NK) cells play a role in the anti-leukemic immune response via their cytolytic activity. Here we show that patients with MDS clones harbouring mutations in the TET2 gene are characterised by phenotypic defects in their circulating NK cells.

View Article and Find Full Text PDF

Innate lymphoid cells (ILCs) - which include cytotoxic Natural Killer (NK) cells and helper-type ILC - are important regulators of tissue immune homeostasis, with possible roles in tumor surveillance. We analyzed ILC and their functionality in human lymph nodes (LN). In LN, NK cells and ILC3 were the prominent subpopulations.

View Article and Find Full Text PDF

Patients with acute myeloid leukemia (AML) carrying high-risk genetic lesions or high residual disease levels after therapy are particularly exposed to the risk of relapse. Here, we identified the long non-coding RNA able to cluster an AML subgroup with peculiar gene signatures linked to hematopoietic cell differentiation and mitochondrial dynamics. silencing triggered hematopoietic commitment in healthy CD34+ cells, whereas in AML cells the pathological undifferentiated state was rescued.

View Article and Find Full Text PDF

Mesenchymal stromal cells (MSC) are a rare, heterogeneous and multipotent population that can be isolated from several tissues. MSC were originally discovered in the bone marrow and studied for their capacity to maintain hematopoietic cells. We will describe here methods to isolate, culture, and bank MSC from human bone marrow.

View Article and Find Full Text PDF

Bone marrow (BM) microenvironment contributes to the regulation of normal hematopoiesis through a finely tuned balance of self-renewal and differentiation processes, cell-cell interaction, and secretion of cytokines that during leukemogenesis are altered and favor tumor cell growth. In pediatric acute myeloid leukemia (AML), chemotherapy is the standard of care, but >30% of patients still relapse. The need to accelerate the evaluation of innovative medicines prompted us to investigate the role of mesenchymal stromal cells (MSCs) in the leukemic niche to define its contribution to the mechanism of leukemia drug escape.

View Article and Find Full Text PDF

The extrafollicular immune response is essential to generate a rapid but transient wave of protective antibodies during infection. Despite its importance, the molecular mechanisms controlling this first response are poorly understood. Here, we demonstrate that enhanced Cxcr4 signaling caused by defective receptor desensitization leads to exacerbated extrafollicular B-cell response.

View Article and Find Full Text PDF

The generation of a potent humoral immune response by B cells relies on the integration of signals induced by the B cell receptor, toll-like receptors and both negative and positive co-receptors. Several reports also suggest that integrin signaling plays an important role in this process. How integrin signaling is regulated in B cells is however still partially understood.

View Article and Find Full Text PDF

The somatic translocation t(8;21)(q22;q22)/RUNX1-RUNX1T1 is one of the most frequent rearrangements found in children with standard-risk acute myeloid leukemia (AML). Despite the favorable prognostic role of this aberration, we recently observed a higher than expected frequency of relapse. Here, we employed an integrated high-throughput approach aimed at identifying new biological features predicting relapse among 34 t(8;21)-rearranged patients.

View Article and Find Full Text PDF

The genomic landscape of children with acute myeloid leukemia (AML) who do not carry any cytogenetic abnormality (CN-AML) is particularly heterogeneous and challenging, being characterized by different clinical outcomes. To provide new genetic insights into this AML subset, we analyzed through RNA-seq 13 pediatric CN-AML cases, corroborating our findings in an independent cohort of 168 AML patients enrolled in the AIEOP AML 2002/01 study. We identified a chimeric transcript involving NUP98 and PHF23, resulting from a cryptic t(11;17)(p15;p13) translocation, demonstrating, for the first time, that NUP98-PHF23 is a novel recurrent (2.

View Article and Find Full Text PDF

A rare location, t(6;11)(q27;q23) (MLL-AF6), is associated with poor outcome in childhood acute myeloid leukemia (AML). The described mechanism by which MLL-AF6, through constitutive self-association and in cooperation with DOT-1L, activates aberrant gene expression does not explain the biological differences existing between t(6;11)-rearranged and other MLL-positive patients nor their different clinical outcome. Here, we show that AF6 is expressed in the cytoplasm of healthy bone marrow cells and controls rat sarcoma viral oncogene (RAS)-guanosine triphosphate (GTP) levels.

View Article and Find Full Text PDF