Publications by authors named "Valar Anoop"

Acinetobacter species such as A. venetianus and A. guillouiae have been studied for various biotechnology applications, including bioremediation of recalcitrant and harmful environmental contaminants, as well as bioengineering of enzymes and diagnostic materials.

View Article and Find Full Text PDF

Micro-organisms are increasingly used in a variety of products for commercial uses, including cleaning products. Such microbial-based cleaning products (MBCP) are represented as a more environmentally-friendly alternative to chemically based cleaning products. The identity of the micro-organisms formulated into these products is often considered confidential business information and is not revealed or it is only partly revealed (i.

View Article and Find Full Text PDF

Most industrial Saccharomyces cerevisiae strains used in food or biotechnology processes are benign. However, reports of S. cerevisiae infections have emerged and novel strains continue to be developed.

View Article and Find Full Text PDF

Fusarium graminearum is the causal agent of gibberella ear rot in maize ears, resulting in yield losses due to mouldy and mycotoxin-contaminated grain. This study represents a global proteomic approach to document the early infection by F. graminearum of two maize inbreds, B73 and CO441, which differ in disease susceptibility.

View Article and Find Full Text PDF

Non-gel-based quantitative proteomics technology was used to profile protein expression differences when Fusarium graminearum was induced to produce trichothecenes in vitro. As F. graminearum synthesizes and secretes trichothecenes early in the cereal host invasion process, we hypothesized that proteins contributing to infection would also be induced under conditions favouring mycotoxin synthesis.

View Article and Find Full Text PDF

Aluminum (Al) toxicity is a major constraint for crop production in acid soils, although crop cultivars vary in their tolerance to Al. We have investigated the potential role of citrate in mediating Al tolerance in Al-sensitive yeast (Saccharomyces cerevisiae; MMYO11) and canola (Brassica napus cv Westar). Yeast disruption mutants defective in genes encoding tricarboxylic acid cycle enzymes, both upstream (citrate synthase [CS]) and downstream (aconitase [ACO] and isocitrate dehydrogenase [IDH]) of citrate, showed altered levels of Al tolerance.

View Article and Find Full Text PDF