Publications by authors named "Vaibhav Upadhyay"

Rationale: Enlargement of lung-associated lymph nodes (LN) predicts worse survival in all patients with interstitial lung disease (ILD). This phenomenon occurs in both connective tissue disease-associated (CTD) ILD and, surprisingly, idiopathic pulmonary fibrosis (IPF), where immune-driven pathogenesis is controversial.

Objective: Determine whether immune responses in the lung LN of ILD patients are antigen-specific and significant to pathology and etiology.

View Article and Find Full Text PDF

Silicone oil is commonly used as a coating in prefilled syringes of protein therapeutics to facilitate the smooth operation of the syringe plunger. The presence of silicone oil droplets in formulations has often been associated with increased aggregation of proteins, which is undesirable for protein-based therapeutics. To ensure the safety and efficacy of protein therapeutics, it is essential to understand the mechanism of adsorption of proteins to silicone oil and subsequent structural transitions leading to aggregation.

View Article and Find Full Text PDF

Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Here, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal profiling of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. Substantial shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived ex vivo communities were revealed by 16 rRNA gene sequencing.

View Article and Find Full Text PDF

Acute respiratory distress syndrome (ARDS) is an often fatal critical illness where lung epithelial injury leads to intrapulmonary fluid accumulation. ARDS became widespread during the COVID-19 pandemic, motivating a renewed effort to understand the complex etiology of this disease. Rigorous prior work has implicated lung endothelial and epithelial injury in response to an insult such as bacterial infection; however, the impact of microorganisms found in other organs on ARDS remains unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Duchenne muscular dystrophy (DMD) is caused by a mutation in the dystrophin gene, leading to a lack of functional dystrophin protein, resulting in muscle degeneration, and although some targeted therapies exist, they have limited effectiveness and are expensive.
  • The structure and function of the C-terminal (CT) domain of dystrophin, which interacts with dystrobrevin to stabilize muscle cell membranes, are not well understood, posing challenges for treatment development.
  • Research indicates that the CT domain is non-globular and interacts differently with two isoforms of dystrobrevin, revealing how variations in their amino acid composition can affect the stability of the dystrophin-associated glycoprotein
View Article and Find Full Text PDF

Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion.

View Article and Find Full Text PDF

Background: Frailty is a geriatric syndrome characterized by chronic inflammation and metabolic insufficiency that creates vulnerability to poor outcomes with aging. We hypothesize that interventions which target common underlying mechanism of aging could ameliorate frailty. Ketone bodies are metabolites produced during fasting or on a ketogenic diet that have pleiotropic effects on inflammatory and metabolic aging pathways in laboratory animal models.

View Article and Find Full Text PDF

Drugs represent our first, and sometimes last, line of defense for many diseases, yet despite decades of research we still do not fully understand why a given drug works in one patient and fails in the next. The human gut microbiome is one of the missing puzzle pieces, due to its ability to parallel and extend host pathways for drug metabolism, along with more complex host-microbiome interactions. Herein, we focus on the well-established links between the gut microbiome and drugs for heart disease and cancer, plus emerging data on neurological disease.

View Article and Find Full Text PDF

Objective: Interstitial lung diseases (ILDs) are a heterogeneous group of disorders that can develop in patients with connective tissue diseases. Establishing autoimmunity in ILD impacts prognosis and treatment. Patients with ILD are screened for autoimmunity by measuring antinuclear autoantibodies, rheumatoid factors, and other nonspecific tests.

View Article and Find Full Text PDF

Dose-limiting toxicities remain a major barrier to drug development and therapy, revealing the limited predictive power of human genetics. Herein, we demonstrate the utility of a more comprehensive approach to studying drug toxicity through longitudinal study of the human gut microbiome during colorectal cancer (CRC) treatment (NCT04054908) coupled to cell culture and mouse experiments. 16S rRNA gene sequencing revealed significant shifts in gut microbial community structure during oral fluoropyrimidine treatment across multiple patient cohorts, in mouse small and large intestinal contents, and in patient-derived communities.

View Article and Find Full Text PDF

Objectives: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathologic finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown.

View Article and Find Full Text PDF

Isothermal titration calorimetry (ITC) and surface plasmon resonance (SPR) are two commonly used methods to probe biomolecular interactions. ITC can provide information about the binding affinity, stoichiometry, changes in Gibbs free energy, enthalpy, entropy, and heat capacity upon binding. SPR can provide information about the association and dissociation kinetics, binding affinity, and stoichiometry.

View Article and Find Full Text PDF

Introduction: Mosaic gain of chromosome 1q (chr1q) has been associated with malformation of cortical development (MCD) and epilepsy. Hyaline protoplasmic astrocytopathy (HPA) is a rare neuropathological finding seen in cases of epilepsy with MCD. The cell-type specificity of mosaic chr1q gain in the brain and the molecular signatures of HPA are unknown.

View Article and Find Full Text PDF

Background: Frailty is a geriatric syndrome characterized by chronic inflammation and metabolic insufficiency that creates vulnerability to poor outcomes with aging. We hypothesize that geroscience interventions, which target mechanisms of aging, could ameliorate frailty. Metabolites such as ketone bodies are candidate geroscience interventions, having pleiotropic effects on inflammo-metabolic aging mechanisms.

View Article and Find Full Text PDF

Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion.

View Article and Find Full Text PDF

With hundreds of coronaviruses (CoVs) identified in bats that can infect humans, it is essential to understand how CoVs that affected the human population have evolved. Seven known CoVs have infected humans, of which three CoVs caused severe disease with high mortalities: severe acute respiratory syndrome (SARS)-CoV emerged in 2002, Middle East respiratory syndrome-CoV in 2012, and SARS-CoV-2 in 2019. SARS-CoV and SARS-CoV-2 belong to the same family, follow the same receptor pathway, and use their receptor-binding domain (RBD) of spike protein to bind to the angiotensin-converting enzyme 2 (ACE2) receptor on the human epithelial cell surface.

View Article and Find Full Text PDF

Background: Adherence to the American Cancer Society (ACS) guidelines of avoiding obesity, maintaining physical activity, and consuming a diet rich in fruits, vegetables, and whole grains is associated with longer survival in colorectal cancer (CRC) survivors. Dietary components of the ACS guidelines may act in part by changing the microbiome, which is implicated in CRC outcomes.

Objectives: We conducted a pilot cross-sectional study to explore associations between ACS guidelines and the gut microbiome.

View Article and Find Full Text PDF

Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting.

View Article and Find Full Text PDF

Interstitial lung diseases (ILD) are heterogeneous conditions that may lead to progressive fibrosis and death of affected individuals. Despite diversity in clinical manifestations, enlargement of lung-associated lymph nodes (LLN) in fibrotic ILD patients predicts worse survival. Herein, we revealed a common adaptive immune landscape in LLNs of all ILD patients, characterized by highly activated germinal centers and antigen-activated T cells including regulatory T cells (Tregs).

View Article and Find Full Text PDF
Article Synopsis
  • * Traditional methods for detecting autoimmunity in ILD, such as testing for anti-nuclear autoantibodies, may overlook important autoantibodies related to tissue antigens.
  • * The study utilized Phage Immunoprecipitation-Sequencing (PhIP-Seq) to discover 17 new autoantibody targets in ILD patients, highlighting CDHR5 as a significant autoantigen associated with inflammation and fibrosis, potentially leading to new understanding of the disease.
View Article and Find Full Text PDF

Unlabelled: Viruses targeting mammalian cells can indirectly alter the gut microbiota, potentially compounding their phenotypic effects. Multiple studies have observed a disrupted gut microbiota in severe cases of SARS-CoV-2 infection that require hospitalization. Yet, despite demographic shifts in disease severity resulting in a large and continuing burden of non-hospitalized infections, we still know very little about the impact of mild SARS-CoV-2 infection on the gut microbiota in the outpatient setting.

View Article and Find Full Text PDF

Among the five known SARS-CoV-2 variants of concern, Delta is the most virulent leading to severe symptoms and increased mortality among infected people. Our study seeks to examine how the biophysical parameters of the Delta variant correlate to the clinical observations. Receptor binding domain (RBD) is the first point of contact with the human host cells and is the immunodominant form of the spike protein.

View Article and Find Full Text PDF

Multiple mutations have been seen to undergo convergent evolution in SARS-CoV-2 variants of concern. One such evolution occurs in Beta, Gamma, and Omicron variants at three amino acid positions K417, E484, and N501 in the receptor binding domain of the spike protein. We examined the physical mechanisms underlying the convergent evolution of three mutations K417T/E484K/N501Y by delineating the individual and collective effects of mutations on binding to angiotensin converting enzyme 2 receptor, immune escape from neutralizing antibodies, protein stability, and expression.

View Article and Find Full Text PDF

Bacterial activation of T helper 17 (Th17) cells exacerbates mouse models of autoimmunity, but how human-associated bacteria impact Th17-driven disease remains elusive. We show that human gut Actinobacterium Eggerthella lenta induces intestinal Th17 activation by lifting inhibition of the Th17 transcription factor Rorγt through cell- and antigen-independent mechanisms. E.

View Article and Find Full Text PDF