Publications by authors named "Ute Sass-Klaassen"

Increasing drought pressure under anthropogenic climate change may jeopardize the potential of tropical forests to capture carbon in woody biomass and act as a long-term carbon dioxide sink. To evaluate this risk, we assessed drought impacts in 483 tree-ring chronologies from across the tropics and found an overall modest stem growth decline (2.5% with a 95% confidence interval of 2.

View Article and Find Full Text PDF

Siberian boreal forests have experienced increases in fire extent and intensity in recent years, which may threaten their role as carbon (C) sinks. Larch forests (Larix spp.) cover approximately 2.

View Article and Find Full Text PDF

Plant matter decomposition is a linchpin of global carbon cycling, yet the role of vertebrates remains poorly understood. Woodpeckers are ubiquitous vertebrate inhabitants of forests, where they hack into deadwood to forage for small animals. Our study in a temperate forest revealed not only how this behavior significantly impacts deadwood decomposition through mechanical breakdown but also how its species specificity leads to positive feedback on decomposition rates.

View Article and Find Full Text PDF
Article Synopsis
  • - The study emphasizes the importance of high-resolution annual forest growth maps, using tree-ring width (TRW) data, to better understand forest carbon sequestration and the impact of climate change and drought on forest ecosystems.
  • - By integrating high-resolution Earth observation data with climate and topography information, the researchers found that species-specific models could explain over 52% of variance in tree growth, enhancing the accuracy of growth predictions compared to using just climate and elevation data.
  • - The research successfully generated a map of annual TRW for 2021, demonstrating that combining different data sources can lead to more effective models for forest growth, while also identifying areas where predictions may be less reliable, particularly in climate marginal zones.
View Article and Find Full Text PDF

Long-term records of tree-ring width (TRW), latewood maximum density (MXD) and blue intensity (BI) measurements on conifers have been largely used to develop high-resolution temperature reconstructions in cool temperate forests. However, the potential of latewood blue intensity (LWBI), less commonly used earlywood blue intensity (EWBI), and delta (difference between EWBI and LWBI, dBI) blue intensity in Mediterranean tree species is still unexplored. Here we developed BI chronologies in moist-elevation limits of the most southwestern European distribution of Pinus nigra subsp.

View Article and Find Full Text PDF

Forensic methods to independently trace timber origin are essential to combat illegal timber trade. Tracing product origin by analysing their multi-element composition has been successfully applied in several commodities, but its potential for timber is not yet known. To evaluate this potential the drivers of wood multi-elemental composition need to be studied.

View Article and Find Full Text PDF

A central paradigm in comparative ecology is that species sort out along a slow-fast resource economy spectrum of plant strategies, but this has been rarely tested for a comprehensive set of stem traits and compartments. We tested how stem traits vary across wood and bark of temperate tree species, whether a slow-fast strategy spectrum exists, and what traits make up this plant strategy spectrum. For 14 temperate tree species, 20 anatomical, chemical, and morphological traits belonging to six key stem functions were measured for three stem compartments (inner wood, outer wood, and bark).

View Article and Find Full Text PDF

Dead wood quantity and quality is important for forest biodiversity, by determining wood-inhabiting fungal assemblages. We therefore evaluated how fungal communities were regulated by stem traits and compartments (i.e.

View Article and Find Full Text PDF

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites.

View Article and Find Full Text PDF

Background And Aims: Conifers are key components of many temperate and boreal forests and are important for forestry, but species differences in stem growth responses to climate are still poorly understood and may hinder effective management of these forests in a warmer and drier future.

Methods: We studied 19 Northern Hemisphere conifer species planted in a 50-year-old common garden experiment in the Netherlands to (1) assess the effect of temporal dynamics in climate on stem growth, (2) test for a possible positive relationship between the growth potential and climatic growth sensitivity across species, and (3) evaluate the extent to which stem growth is controlled by phylogeny.

Key Results: Eighty-nine per cent of the species showed a significant reduction in stem growth to summer drought, 37 % responded negatively to spring frost and 32 % responded positively to higher winter temperatures.

View Article and Find Full Text PDF

Oak wood was highly appreciated and widely used for construction in past centuries. As population sizes expanded in some regions of Europe, local forests were depleted of high-quality timber. Therefore, regions of soaring economies were importing timber initially from the European market and eventually from other continents.

View Article and Find Full Text PDF

The coastal vegetation of islands is expected to be affected by future sea-level rise and other anthropogenic impacts. The biodiverse coastal vegetation on the eastern part of the Dutch Wadden Island of Ameland has experienced land subsidence caused by gas extraction since 1986. This subsidence mimics future sea-level rising through increased flooding and raising groundwater levels.

View Article and Find Full Text PDF

Provenance trials are used to study the effects of tree origin on climate-growth relationships. Thereby, they potentially identify provenances which appear more resilient to anticipated climate change. However, when studying between provenance variability in growth behavior it becomes important to address potential effects related to site marginality in the context of provenance trials.

View Article and Find Full Text PDF

Reactivation of axial water flow in ring-porous species is a complex process related to stem water content and developmental stage of both earlywood-vessel and leaf formation. Yet empirical evidence with non-destructive methods on the dynamics of water flow resumption in relation to these mechanisms is lacking. Here we combined in vivo magnetic resonance imaging and wood-anatomical observations to monitor the dynamic changes in stem water content and flow during spring reactivation in 4-year-old pedunculate oaks (Quercus robur L.

View Article and Find Full Text PDF

Spring flooding in riparian forests can cause significant reductions in earlywood-vessel size in submerged stem parts of ring-porous tree species, leading to the presence of 'flood rings' that can be used as a proxy to reconstruct past flooding events, potentially over millennia. The mechanism of flood-ring formation and the relation with timing and duration of flooding are still to be elucidated. In this study, we experimentally flooded 4-year-old Quercus robur trees at three spring phenophases (late bud dormancy, budswell, and internode expansion) and over different flooding durations (2, 4, and 6 weeks) to a stem height of 50 cm.

View Article and Find Full Text PDF

During winter dormancy, temperate trees are capable of only a restricted response to wounding. Depending on the ambient temperature during winter dormancy, wounded trees may start compartmentalization, e.g.

View Article and Find Full Text PDF

Background And Aims: Frankincense, a gum-resin, has been tapped from Boswellia papyrifera trees for centuries. Despite the intensive tapping and economic interest of B. papyrifera, information on the resin secretory structures, which are responsible for synthesis, storage and transport of frankincense, is virtually absent.

View Article and Find Full Text PDF
Article Synopsis
  • Dead wood plays a critical role in carbon storage and provides habitats for various organisms as it decays, necessitating a better understanding of the factors influencing wood decomposition.
  • The LOGLIFE experiment aims to explore how different wood traits and environmental conditions affect the decomposition process and the related diversity of microbial and invertebrate communities.
  • Conducted in two contrasting forest sites in the Netherlands, LOGLIFE will collaborate with other researchers to improve forest management practices for enhanced carbon sequestration and biodiversity conservation.
View Article and Find Full Text PDF

The decomposition of dead wood is a critical uncertainty in models of the global carbon cycle. Despite this, relatively few studies have focused on dead wood decomposition, with a strong bias to higher latitudes. Especially the effect of interspecific variation in species traits on differences in wood decomposition rates remains unknown.

View Article and Find Full Text PDF

*In a comparative study of 42 rainforest tree species we examined relationships amongst wood traits, diameter growth and survival of large trees in the field, and shade tolerance and adult stature of the species. *The species show two orthogonal axes of trait variation: a primary axis related to the vessel size-number trade-off (reflecting investment in hydraulic conductance vs hydraulic safety) and a secondary axis related to investment in parenchyma vs fibres (storage vs strength). Across species, growth rate was positively related to vessel diameter and potential specific hydraulic conductance (K(p)), and negatively related to wood density.

View Article and Find Full Text PDF

Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants.

View Article and Find Full Text PDF