Publications by authors named "Umut Kamber"

The influence of interface electronic structure is vital to control lower dimensional superconductivity and its applications to gated superconducting electronics, and superconducting layered heterostructures. Lower dimensional superconductors are typically synthesized on insulating substrates to reduce interfacial driven effects that destroy superconductivity and delocalize the confined wavefunction. Here, we demonstrate that the hybrid electronic structure formed at the interface between a lead film and a semiconducting and highly anisotropic black phosphorus substrate significantly renormalizes the superconductivity in the lead film.

View Article and Find Full Text PDF

Spin glasses are a highly complex magnetic state of matter intricately linked to spin frustration and structural disorder. They exhibit no long-range order and exude aging phenomena, distinguishing them from quantum spin liquids. We report a previously unknown type of spin glass state, the spin-Q glass, observable in bulk-like crystalline metallic neodymium thick films.

View Article and Find Full Text PDF

Scanning tunneling microscopy (STM) and atomic force microscopy (AFM) images of graphene reveal either a triangular or honeycomb pattern at the atomic scale depending on the imaging parameters. The triangular patterns at the atomic scale are particularly difficult to interpret, as the maxima in the images could be every other carbon atom in the six-fold hexagonal array or even a hollow site. Carbon sites exhibit an inequivalent electronic structure in HOPG or multilayer graphene due to the presence of a carbon atom or a hollow site underneath.

View Article and Find Full Text PDF