Background: Dermal fillers have become prevalent in aesthetic surgery, offering noninvasive solutions for addressing signs of aging and enhancing facial features.
Methods: In this study, the in vivo administration of dermal fillers, including a hyaluronic-cross-linked filler (HA-R), a PDLLA-HA combined filler (HA-PDLLA), a microparticle PDO filler (PDO), a PN filler extracted from salmon milt (PN), and pure hyaluronic acid (HA), along with PBS as a control, was evaluated over a 12 week period.
Results: HA-R exhibited sustained volume retention, contrasting with rapid volume loss observed with PN, and gradual dissolution of PDO by week 12.
Background: Microneedles are tiny needles, typically ranging from tens to hundreds of micrometers in length, used in various medical procedures and treatments. The tested medical device named "CELLADEEP Patch" a dissolvable microneedle therapy system (MTS), made of hyaluronic acid and collagen. And the iontophoresis technique is also applied in the system.
View Article and Find Full Text PDFAlternative antibody (aptamer)-based biosensors are attracting increasing attention owing to advantages such as simplicity and low cost, which are beneficial for point-of-care diagnosis, particularly where resources are limited. In this study based on modeling predictions made with Autodock Vina, the binding affinity of an optimized novel peptide (Pf_P1: KITTTDEEVEGIFD) was altered compared to that of the original epitope peptide (P1: KITDEEVEGIFDC). The binding energy of Pf_P1 implies that it has stronger interactions with lactate dehydrogenase (LDH) than with human LDH.
View Article and Find Full Text PDFHuman respiratory syncytial virus (RSV) is one of the most common viruses infecting the respiratory tracts of infants. The rapid and sensitive detection of RSV is important to minimize the incidence of infection. In this study, novel monoclonal antibodies (mAbs; B11A5 and E8A11) against RSV nucleoprotein (NP) were developed and applied to develop a rapid fluorescent immunochromatographic strip test (FICT), employing europium nanoparticles as the fluorescent material.
View Article and Find Full Text PDFThe development of a sensitive and rapid diagnostic test is needed for early detection of avian influenza (AI) H7 subtype. In this study, novel monoclonal antibodies (mAbs) against influenza A H7N9 recombinant hemagglutinin (rHA)1 were developed and applied to a Europium nanoparticle-based rapid fluorescent immunochromatographic strip test (FICT) to improve the sensitivity of the rapid diagnostic system. Two antibodies (2F4 and 6D7) exhibited H7 subtype specificity in a dot-FICT assay by optimization of the conjugate and the pH of the lysis buffer.
View Article and Find Full Text PDFCurrently, the point of care testing (POCT) is not fully developed for subtype-specific avian influenza virus detection. In this study, an H5N1 hemaglutinin 1 (HA1) epitope (P0: KPNDAINF) and three modified peptides (P1: KPNTAINF, P2: KPNGAINF, P3: KPNDAINDAINF) were evaluated as POCT elements for rapid detection of avian influenza virus. Based on modeling predictions by Autodock Vina, binding affinity varied depending on alteration of one amino acid in these peptides.
View Article and Find Full Text PDFBiosens Bioelectron
August 2017
Sensitive and rapid diagnostic systems for avian influenza (AI) virus are required to screen large numbers of samples during a disease outbreak and to prevent the spread of infection. In this study, we employed a novel fluorescent dye for the rapid and sensitive recognition of AI virus. The styrylpyridine phosphor derivative was synthesized by adding allyl bromide as a stable linker and covalently immobilizing it on latex beads with antibodies generating the unique Red dye 53-based fluorescent probe.
View Article and Find Full Text PDF