Publications by authors named "Trinayan Kashyap"

The remarkable efficacy of B-cell maturation antigen (BCMA)-directed chimeric antigen receptor T-cell therapy (CAR-T) has had a significant impact on treatment strategies for relapsed/refractory multiple myeloma (RRMM). However, response durability remains a concern, necessitating the optimization of CAR-T procedures. Therapies preceding CAR-T therapy are crucial for disease control and preserving T-cell fitness.

View Article and Find Full Text PDF

Exportin-1 (XPO1) is a nuclear export protein that, when overexpressed, can facilitate cancer cell proliferation and survival and is frequently overexpressed or mutated in cancer patients. As such, selective inhibitors of XPO1 (XPO1i) function have been developed to inhibit cancer cell proliferation and induce apoptosis. This review outlines the evidence for the immunomodulatory properties of XPO1 inhibition and discusses the potential for combining and sequencing XPO1i with immunotherapy to improve the treatment of patients with cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The nuclear export receptor XPO1 is commonly overexpressed in cancer cells, leading to mislocalization of important proteins; the inhibitor selinexor reverses this effect by blocking XPO1-cargo binding.
  • Selinexor triggers the degradation of XPO1 through a specific mechanism involving the cullin-RING E3 ubiquitin ligase (CRL) system and its substrate receptor ASB8.
  • Research using cryogenic electron microscopy revealed that selinexor stabilizes XPO1 in a unique conformation, allowing ASB8 to bind effectively and facilitate ubiquitination, showcasing a new method of protein degradation that differs from previously known molecular glue strategies.
View Article and Find Full Text PDF

Multiple myeloma (MM), a malignant plasma cell infiltration of the bone marrow, is generally considered incurable: resistance to multiple therapeutic drugs inevitably arises from tumor cell-intrinsic and tumor microenvironment (TME)-mediated mechanisms. Here we report that the proteoglycan tandem repeat 1 (PTR1) domain of the TME matrix protein, hyaluronan and proteoglycan link protein 1 (HAPLN1), induces a host of cell survival genes in MM cells and variable resistance to different classes of clinical drugs, including certain proteasome inhibitors, steroids, immunomodulatory drugs, and DNA damaging agents, in several MM cell lines tested. Collectively, our study identifies HAPLN1 as an extracellular matrix factor that can simultaneously confer MM cell resistance to multiple therapeutic drugs.

View Article and Find Full Text PDF

Chordoma is a rare cancer that grows in the base of the skull and along the mobile spine from remnants of embryonic notochord tissue. The cornerstone of current treatments is surgical excision with adjuvant radiation therapy, although complete surgical removal is not always possible. Chordomas have high rates of metastasis and recurrence, with no approved targeted agents.

View Article and Find Full Text PDF

BACKGROUND Approximately 10% to 15% of patients with multiple myeloma (MM) are diagnosed with high-risk disease and have poor prognosis. Clinical trial data supports the combined use of selinexor, bortezomib, and dexamethasone (XVd) for treatment of patients with MM who have received at least 1 prior therapy. Information on the efficacy of XVd and of subsequent allogeneic stem cell transplantation (SCT) in heavily pretreated patients with high-risk MM is limited.

View Article and Find Full Text PDF

Objective: To investigate the hypothesis that selective inhibitors of nuclear export (SINE compounds), recently approved for treatment of refractory plasma cell (PC) malignancy, may have potential in the treatment of lupus.

Methods: Female NZB/NZW mice were treated with the SINE compound KPT-350 or vehicle control. Tissue specimens were harvested and analyzed by flow cytometry, using standard markers.

View Article and Find Full Text PDF

Aberrant nuclear protein transport, often observed in cancer, causes mislocalization-dependent inactivation of critical cellular proteins. Earlier we showed that overexpression of exportin 1 is linked to higher grade and Gleason score in metastatic castration resistant prostate cancer (mCRPC). We also showed that a selective inhibitor of nuclear export (SINE) selinexor and second generation eltanexor (KPT-8602) could suppress mCRPC growth, reduce androgen receptor (AR), and re-sensitize to androgen deprivation therapy.

View Article and Find Full Text PDF

The novel coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the recent global pandemic. The nuclear export protein (XPO1) has a direct role in the export of SARS-CoV proteins including ORF3b, ORF9b, and nucleocapsid. Inhibition of XPO1 induces anti-inflammatory, anti-viral, and antioxidant pathways.

View Article and Find Full Text PDF

The selective inhibitor of nuclear export (SINE) compounds selinexor (KPT-330) and eltanexor (KPT-8602) are from a novel class of small molecules that target exportin-1 (XPO1 [CRM1]), an essential nucleo-cytoplasmic transport protein responsible for the nuclear export of major tumor suppressor proteins and growth regulators such as p53, p21, and p27. XPO1 also affects the translation of messenger RNAs for critical oncogenes, including MYC, BCL2, MCL1, and BCL6, by blocking the export of the translation initiation factor eIF4E. Early trials with venetoclax (ABT-199), a potent, selective inhibitor of BCL2, have revealed responses across a variety of hematologic malignancies.

View Article and Find Full Text PDF

High-grade glioma (HGG) is the leading cause of cancer-related death among children. Selinexor, an orally bioavailable, reversible inhibitor of the nuclear export protein, exportin 1, is in clinical trials for a range of cancers, including HGG. It inhibits the NF-κB pathway and strongly induces the expression of nerve growth factor receptor (NGFR) in preclinical cancer models.

View Article and Find Full Text PDF

Emerging studies have shown that the expression of AR splice variants (ARv) lacking ligand-binding domain is associated with castrate-resistant prostate cancer (CRPC) and higher risk of tumor metastasis and recurrence. Nuclear export protein XPO1 regulates the nuclear localization of many proteins including tumor suppressor proteins. Increased XPO1 in prostate cancer is associated with a high Gleason score and bone metastasis.

View Article and Find Full Text PDF

Introduction: The goal of this study was to examine the effects of selinexor, an inhibitor of exportin-1 mediated nuclear export, on DNA damage repair and to evaluate the cytotoxic effects of selinexor in combination with DNA damaging agents (DDAs) in cancer cells.

Results: Selinexor reduced the expression of DNA damage repair (DDR) proteins. This did not induce significant DNA damage in tested cell lines.

View Article and Find Full Text PDF

Patient mortality rates have remained stubbornly high (40%) for the past 35 years in head and neck squamous cell carcinoma (HNSCC) due to inherent or acquired drug resistance. Thus, a critical issue in advanced SCC is to identify and target the mechanisms that contribute to therapy resistance. We report that the transcriptional inhibitor, E2F7, is mislocalized to the cytoplasm in >80% of human HNSCCs, whereas the transcriptional activator, E2F1, retains localization to the nucleus in SCC.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a plasma cell neoplasm that results in over 11,000 deaths in the United States annually. The backbone therapy for the treatment of MM patients almost always includes combinations with corticosteroids such as dexamethasone (DEX). We found that DEX in combination with selinexor, an inhibitor of exportin-1 (XPO1) activity, synergistically inhibits the mTOR pathway and subsequently promotes cell death in MM cells.

View Article and Find Full Text PDF

Arrestin-related domain-containing protein-3 (ARRDC3) is one of 6 mammalian arrestins, which suppresses metastasis by inducing degradation of phosphorylated β2-adrenergic receptor (β2 AR) and integrin β4 (ITG β4). Our previous studies demonstrated that expression of ARRDC3 is epigentically silenced in Triple Negative Breast Cancer (TNBC) cells, and the forced expression of ARRDC3 significantly reduced the invasive potential of TNBC cells. In the current study, we found that Selective Inhibitors of Nuclear Export (SINE) compounds (KPT-185 and selinexor (KPT-330)) restore ARRDC3 expression in TNBC cell lines (MDA-MB-231 and MDA-MB-468) at both the mRNA and protein level in a dose and time course dependent manner.

View Article and Find Full Text PDF

Selinexor is the first oral selective inhibitor of nuclear export compound tested for cancer treatment. Selinexor has demonstrated a safety therapy profile with broad antitumor activity against solid and hematological malignancies in phases 2 and 3 clinical trials (#NCT03071276, #NCT02343042, #NCT02227251, #NCT03110562, and #NCT02606461). Although selinexor shows promising efficacy, its primary adverse effect is high-grade thrombocytopenia.

View Article and Find Full Text PDF

Selinexor is a novel, first-in-class, selective inhibitor of nuclear export compound, which blocks exportin 1 (XPO1) function, leads to nuclear accumulation of tumor suppressor proteins, and induces cancer cell death. A phase 1 dose-escalation study was initiated to examine the safety and efficacy of selinexor in patients with advanced hematological malignancies. Ninety-five patients with relapsed or refractory acute myeloid leukemia (AML) were enrolled between January 2013 and June 2014 to receive 4, 8, or 10 doses of selinexor in a 21- or 28-day cycle.

View Article and Find Full Text PDF

Selinexor, a selective inhibitor of nuclear export (SINE) compound targeting exportin-1, has previously been shown to inhibit melanoma cell growth We hypothesized that combining selinexor with antibodies that block or disrupt T-cell checkpoint molecule signaling would exert superior antimelanoma activity. , selinexor increased and gene expression in leukocytes and induced gene expression in human melanoma cell lines. Mice bearing syngeneic B16F10 melanoma tumors demonstrated a significant reduction in tumor growth rate in response to the combination of selinexor and anti-PD-1 or anti-PD-L1 antibodies ( < 0.

View Article and Find Full Text PDF

Selinexor (KPT-330) is a first-in-class nuclear transport inhibitor currently in clinical trials as an anticancer agent. To determine how selinexor might affect antitumor immunity, we analyzed immune homeostasis in mice treated with selinexor and found disruptions in T-cell development, a progressive loss of CD8 T cells, and increases in inflammatory monocytes. Antibody production in response to immunization was mostly normal.

View Article and Find Full Text PDF

Acquired proteasome-inhibitor (PI) resistance is a major obstacle in the treatment of multiple myeloma (MM). We investigated whether the clinical XPO1-inhibitor selinexor, when combined with bortezomib or carfilzomib, could overcome acquired resistance in MM. PI-resistant myeloma cell lines both in vitro and in vivo and refractory myeloma patient biopsies were treated with selinexor/bortezomib or carfilzomib and assayed for apoptosis.

View Article and Find Full Text PDF

The nuclear export protein, exportin-1 (XPO1/CRM1), is overexpressed in many cancers and correlates with poor prognosis. Selinexor, a first-in-class Selective Inhibitor of Nuclear Export (SINE) compound, binds covalently to XPO1 and blocks its function. Treatment of cancer cells with selinexor results in nuclear retention of major tumor suppressor proteins and cell cycle regulators, leading to growth arrest and apoptosis.

View Article and Find Full Text PDF

Purpose: Selinexor, a selective inhibitor of XPO1, is currently being tested as single agent in clinical trials in acute myeloid leukemia (AML). However, considering the molecular complexity of AML, it is unlikely that AML can be cured with monotherapy. Therefore, we asked whether adding already established effective drugs such as topoisomerase (Topo) II inhibitors to selinexor will enhance its anti-leukemic effects in AML.

View Article and Find Full Text PDF

Background: Exportin 1 (XPO1) is a well-characterized nuclear export protein whose expression is up-regulated in many types of cancers and functions to transport key tumor suppressor proteins (TSPs) from the nucleus. Karyopharm Therapeutics has developed a series of small-molecule Selective Inhibitor of Nuclear Export (SINE) compounds, which have been shown to block XPO1 function both in vitro and in vivo. The drug candidate, selinexor (KPT-330), is currently in Phase-II/IIb clinical trials for treatment of both hematologic and solid tumors.

View Article and Find Full Text PDF

Pancreatic cancer is an aggressive and deadly malignancy responsible for the death of over 37,000 Americans each year. Gemcitabine-based therapy is the standard treatment for pancreatic cancer but has limited efficacy due to chemoresistance. In this study, we evaluated the in vitro and in vivo effects of gemcitabine combined with the selective nuclear export (CRM1) inhibitor KPT-330 on pancreatic cancer growth.

View Article and Find Full Text PDF