Publications by authors named "Travis B Lear"

NSP7 (Non-Structural Protein 7) of SARS-CoV-2 is a crucial component for viral replication and transcription. In this study, it is revealed that the host E3 ubiquitin ligase FBXO5 suppresses viral replication by mediating NSP7 lysine-48-linked ubiquitination and subsequent proteasomal degradation. Interestingly, it is also determined that NSP7 expression impairs the host antiviral response by inhibiting the ISGylation of melanoma differentiation-associated protein 5 (MDA5), a key sensor for viral RNA.

View Article and Find Full Text PDF

The endolysosomal pathway plays an evolutionarily conserved role in pathogen clearance, and viruses have evolved complex mechanisms to evade this host defense system. Here, we describe a previously unidentified aspect of coronaviral infection, whereby the master transcriptional activator of lysosomal homeostasis-TFEB-is targeted for proteasomal-mediated degradation upon viral infection. Through mass spectrometry analysis and an unbiased small interfering RNA screen, we identify that TFEB protein stability is coordinately regulated by the E3 ubiquitin ligase subunit DCAF7 and the PAK2 kinase.

View Article and Find Full Text PDF

The main protease of severe acute respiratory syndrome coronavirus 2, Mpro, is a key viral protein essential for viral infection and replication. Mpro has been the target of many pharmacological efforts; however, the host-specific regulation of Mpro protein remains unclear. Here, we report the ubiquitin-proteasome-dependent degradation of Mpro protein in human cells, facilitated by the human E3 ubiquitin ligase ZBTB25.

View Article and Find Full Text PDF

Dysregulated cytokine signalling is a hallmark of inflammatory bowel diseases. Inflammatory responses of the colon are regulated by the suppressor of cytokine signalling (SOCS) proteins. SOCS1 is a key member of this family, and its function is critical in maintaining an appropriate inflammatory response through the JAK/STAT signalling pathway.

View Article and Find Full Text PDF

Senescent cell accumulation is increasingly associated with a number of age-related cardiovascular diseases. Now, a new manuscript in suggests that a novel vaccine-based strategy might provide a targeted method to eliminate the senescent cell population.

View Article and Find Full Text PDF

Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial.

View Article and Find Full Text PDF

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identify small molecules that reduce surface expression of TMPRSS2 using a library of 2,560 FDA-approved or current clinical trial compounds.

View Article and Find Full Text PDF

The adenosine monophosphate (AMP)-activated protein kinase (Ampk) is a central regulator of metabolic pathways, and increasing Ampk activity has been considered to be an attractive therapeutic target. Here, we have identified an orphan ubiquitin E3 ligase subunit protein, Fbxo48, that targets the active, phosphorylated Ampkα (pAmpkα) for polyubiquitylation and proteasomal degradation. We have generated a novel Fbxo48 inhibitory compound, BC1618, whose potency in stimulating Ampk-dependent signaling greatly exceeds 5-aminoimidazole-4-carboxamide-1-β-ribofuranoside (AICAR) or metformin.

View Article and Find Full Text PDF

SARS-CoV-2 (2019-nCoV) is the pathogenic coronavirus responsible for the global pandemic of COVID-19 disease. The Spike (S) protein of SARS-CoV-2 attaches to host lung epithelial cells through the cell surface receptor ACE2, a process dependent on host proteases including TMPRSS2. Here, we identified small molecules that can reduce surface expression of TMPRSS2 using a 2,700 FDA-approved or current clinical trial compounds.

View Article and Find Full Text PDF

Mitochondrial quality control is mediated by the PTEN-induced kinase 1 (PINK1), a cytoprotective protein that is dysregulated in inflammatory lung injury and neurodegenerative diseases. Here, we show that a ubiquitin E3 ligase receptor component, FBXO7, targets PINK1 for its cellular disposal. FBXO7, by mediating PINK1 ubiquitylation and degradation, was sufficient to induce mitochondrial injury and inflammation in experimental pneumonia.

View Article and Find Full Text PDF

NRF2 is a master regulator of cellular anti-oxidant and anti-inflammatory responses, and strategies to augment NRF2-dependent responses may beneficial in many diseases. Basal NRF2 protein level is constrained by constitutive KEAP1-mediated degradation, but in the presence of electrophiles, NRF2 ubiquitination is inhibited. Impeded NRF2 degradation increases NRF2 protein, resulting in up-regulation of anti-oxidant gene transcription, and decreased inflammation.

View Article and Find Full Text PDF

Systemic scleroderma (SSc) is an autoimmune disease that affects over 2.5 million people globally. SSc results in dysfunctional connective tissues with excessive profibrotic signaling, affecting skin, cardiovascular, and particularly lung tissue.

View Article and Find Full Text PDF

Interleukin-3 (IL-3) receptor α (IL-3Rα) is the α subunit of the ligand-specific IL-3R and initiates intracellular signaling in response to IL-3. IL-3 amplifies proinflammatory signaling and cytokine storm in murine sepsis models. Here we found that RNFT2 (RING finger transmembrane-domain containing protein 2, also TMEM118), a previously uncharacterized RING finger ubiquitin E3 ligase, negatively regulated IL-3-dependent cellular responses through IL-3Rα ubiquitination and degradation in the proteasome.

View Article and Find Full Text PDF

Nutrient sensing is a critical cellular process controlling metabolism and signaling. mTOR complex 1 (mTORC1) is the primary signaling hub for nutrient sensing and, when activated, stimulates anabolic processes while decreasing autophagic flux. mTORC1 receives nutrient status signals from intracellular amino acid sensors.

View Article and Find Full Text PDF

Dysregulated proinflammatory cytokine release has been implicated in the pathogenesis of several life-threatening acute lung illnesses such as pneumonia, sepsis, and acute respiratory distress syndrome. Suppressors of cytokine signaling proteins, particularly SOCS2, have recently been described as antiinflammatory mediators. However, the regulation of SOCS2 protein has not been described.

View Article and Find Full Text PDF

The IFN gamma receptor 1 (IFNGR1) binds IFN-γ and activates gene transcription pathways crucial for controlling bacterial and viral infections. Although decreases in IFNGR1 surface levels have been demonstrated to inhibit IFN-γ signaling, little is known regarding the molecular mechanisms controlling receptor stability. Here, we show in epithelial and monocytic cell lines that IFNGR1 displays K48 polyubiquitination, is proteasomally degraded, and harbors three ubiquitin acceptor sites at K277, K279, and K285.

View Article and Find Full Text PDF

Toll-like receptor 2 (TLR2) is a pattern recognition receptor that recognizes many types of PAMPs that originate from gram-positive bacteria. Here we describe a novel mechanism regulating TLR2 protein expression and subsequent cytokine release through the ubiquitination and degradation of the receptor in response to ligand stimulation. We show a new mechanism in which an uncharacterized RING finger E3 ligase, PPP1R11, directly ubiquitinates TLR2 both in vitro and in vivo, which leads to TLR2 degradation and disruption of the signaling cascade.

View Article and Find Full Text PDF

The inflammasome is a multiprotein complex that augments the proinflammatory response by increasing the generation and cellular release of key cytokines. Specifically, the NALP3 inflammasome requires two-step signaling, priming and activation, to be functional to release the proinflammatory cytokines IL-1β and IL-18. The priming process, through unknown mechanisms, increases the protein levels of NALP3 and pro-IL-1β in cells.

View Article and Find Full Text PDF