RNA editing in plant organelles is widely regarded as a neutral corrective mechanism, yet it persists as a complex, energetically costly process, requiring numerous nuclear-encoded pentatricopeptide repeat proteins. Ferns are the most diverse lineage of land plants that uniquely retain both cytidine-to-uridine (C-to-U) and uridine-to-cytidine (U-to-C) RNA editing in their plastomes, offering a powerful system to investigate the evolutionary forces shaping both editing types. Two distantly related fern lineages - Hymenophyllaceae and Vittarioideae (Pteridaceae) - each containing sister sublineages with contrasting evolutionary rates, were selected for comparative analysis.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2025
The effect of traits on diversification rates is a major topic of study in the fields of evolutionary biology and palaeontology. Many researchers investigating these macroevolutionary questions currently make use of the extensive suite of state-dependent speciation and extinction (SSE) models. These models were developed for, and are almost exclusively used with, phylogenetic trees of extant species.
View Article and Find Full Text PDFObligate pollination mutualisms, in which plant and pollinator lineages depend on each other for reproduction, often exhibit high levels of species specificity. However, cases in which two or more pollinator species share a single host species (host sharing), or two or more host species share a single pollinator species (pollinator sharing), are known to occur in current ecological time. Further, evidence for host switching in evolutionary time is increasingly being recognized in these systems.
View Article and Find Full Text PDFBayesian total-evidence approaches under the fossilized birth-death model enable biologists to combine fossil and extant data while accounting for uncertainty in the ages of fossil specimens, in an integrative phylogenetic analysis. Fossil age uncertainty is a key feature of the fossil record as many empirical data sets may contain a mix of precisely dated and poorly dated fossil specimens or deposits. In this study, we explore whether reliable age estimates for fossil specimens can be obtained from Bayesian total-evidence phylogenetic analyses under the fossilized birth-death model.
View Article and Find Full Text PDFPenguins lost the ability to fly more than 60 million years ago, subsequently evolving a hyper-specialized marine body plan. Within the framework of a genome-scale, fossil-inclusive phylogeny, we identify key geological events that shaped penguin diversification and genomic signatures consistent with widespread refugia/recolonization during major climate oscillations. We further identify a suite of genes potentially underpinning adaptations related to thermoregulation, oxygenation, diving, vision, diet, immunity and body size, which might have facilitated their remarkable secondary transition to an aquatic ecology.
View Article and Find Full Text PDFThe specificity of pollinator host choice influences opportunities for reproductive isolation in their host plants. Similarly, host plants can influence opportunities for reproductive isolation in their pollinators. For example, in the fig and fig wasp mutualism, offspring of fig pollinator wasps mate inside the inflorescence that the mothers pollinate.
View Article and Find Full Text PDFPaederinae is one of the most diverse subfamilies among rove beetles, yet their evolutionary history remains poorly understood. This is attributed to the limited number of phylogenetic studies, which either sought answers at a shallower taxonomic level or included limited taxon sampling. Especially problematic is the position of the rare Neotropical tribe Cylindroxystini, morphologically one of the most puzzling groups of Paederinae.
View Article and Find Full Text PDFProc Biol Sci
August 2020
New Zealand is a globally significant hotspot for seabird diversity, but the sparse fossil record for most seabird lineages has impeded our understanding of how and when this hotspot developed. Here, we describe multiple exceptionally well-preserved specimens of a new species of penguin from tightly dated (3.36-3.
View Article and Find Full Text PDFThe fig and pollinator wasp obligate mutualism is diverse (∼750 described species), ecologically important, and ancient (∼80 Ma). Once thought to be an example of strict one-to-one cospeciation, current thinking suggests genera of pollinator wasps codiversify with corresponding sections of figs, but the degree to which cospeciation or other processes contribute to the association at finer scales is unclear. Here, we use genome-wide sequence data from a community of Panamanian strangler figs and associated wasp pollinators to estimate the relative contributions of four evolutionary processes generating cophylogenetic patterns in this mutualism: cospeciation, host switching, pollinator speciation, and pollinator extinction.
View Article and Find Full Text PDFA birth-death-sampling model gives rise to phylogenetic trees with samples from the past and the present. Interpreting "birth" as branching speciation, "death" as extinction, and "sampling" as fossil preservation and recovery, this model - also referred to as the fossilized birth-death (FBD) model - gives rise to phylogenetic trees on extant and fossil samples. The model has been mathematically analyzed and successfully applied to a range of datasets on different taxonomic levels, such as penguins, plants, and insects.
View Article and Find Full Text PDFPhylogenetics and phylodynamics are central topics in modern evolutionary biology. Phylogenetic methods reconstruct the evolutionary relationships among organisms, whereas phylodynamic approaches reveal the underlying diversification processes that lead to the observed relationships. These two fields have many practical applications in disciplines as diverse as epidemiology, developmental biology, palaeontology, ecology, and linguistics.
View Article and Find Full Text PDFBayesian phylogenetic inference aims to estimate the evolutionary relationships among different lineages (species, populations, gene families, viral strains, etc.) in a model-based statistical framework that uses the likelihood function for parameter estimates. In recent years, evolutionary models for Bayesian analysis have grown in number and complexity.
View Article and Find Full Text PDFThe total-evidence approach to divergence time dating uses molecular and morphological data from extant and fossil species to infer phylogenetic relationships, species divergence times, and macroevolutionary parameters in a single coherent framework. Current model-based implementations of this approach lack an appropriate model for the tree describing the diversification and fossilization process and can produce estimates that lead to erroneous conclusions. We address this shortcoming by providing a total-evidence method implemented in a Bayesian framework.
View Article and Find Full Text PDFPrograms for Bayesian inference of phylogeny currently implement a unique and fixed suite of models. Consequently, users of these software packages are simultaneously forced to use a number of programs for a given study, while also lacking the freedom to explore models that have not been implemented by the developers of those programs. We developed a new open-source software package, RevBayes, to address these problems.
View Article and Find Full Text PDFBayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2014
Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data--most commonly, fossil age estimates--are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record.
View Article and Find Full Text PDFRecent years have seen a rapid expansion of the model space explored in statistical phylogenetics, emphasizing the need for new approaches to statistical model representation and software development. Clear communication and representation of the chosen model is crucial for: (i) reproducibility of an analysis, (ii) model development, and (iii) software design. Moreover, a unified, clear and understandable framework for model representation lowers the barrier for beginners and nonspecialists to grasp complex phylogenetic models, including their assumptions and parameter/variable dependencies.
View Article and Find Full Text PDFBMC Bioinformatics
May 2013
Background: Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs.
View Article and Find Full Text PDFIn Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil.
View Article and Find Full Text PDFMol Biol Evol
March 2012
We introduce a new model for relaxing the assumption of a strict molecular clock for use as a prior in Bayesian methods for divergence time estimation. Lineage-specific rates of substitution are modeled using a Dirichlet process prior (DPP), a type of stochastic process that assumes lineages of a phylogenetic tree are distributed into distinct rate classes. Under the Dirichlet process, the number of rate classes, assignment of branches to rate classes, and the rate value associated with each class are treated as random variables.
View Article and Find Full Text PDFWe explored the use of multidimensional scaling (MDS) of tree-to-tree pairwise distances to visualize the relationships among sets of phylogenetic trees. We found the technique to be useful for exploring "tree islands" (sets of topologically related trees among larger sets of near-optimal trees), for comparing sets of trees obtained from bootstrapping and Bayesian sampling, for comparing trees obtained from the analysis of several different genes, and for comparing multiple Bayesian analyses. The technique was also useful as a teaching aid for illustrating the progress of a Bayesian analysis and as an exploratory tool for examining large sets of phylogenetic trees.
View Article and Find Full Text PDFFour New World genera of dwarf boas (Exiliboa, Trachyboa, Tropidophis, and Ungaliophis) have been placed by many systematists in a single group (traditionally called Tropidophiidae). However, the monophyly of this group has been questioned in several studies. Moreover, the overall relationships among basal snake lineages, including the placement of the dwarf boas, are poorly understood.
View Article and Find Full Text PDF