Publications by authors named "Tracey Boyden"

PF-05212377 (SAM760) is a potent and selective 5-HT antagonist, previously under development for the treatment of Alzheimer's disease. In vitro, PF-05212377 was determined to be a P-gp/non-BCRP human transporter substrate. Species differences were observed in the in vivo brain penetration of PF-05212377 with a ratio of the unbound concentration in brain/unbound concentration in plasma (C /C ) of 0.

View Article and Find Full Text PDF

Computational modeling was used to direct the synthesis of analogs of previously reported phosphodiesterase 2A (PDE2A) inhibitor 1 with an imidazotriazine core to yield compounds of significantly enhanced potency. The analog PF-05180999 (30) was subsequently identified as a preclinical candidate targeting cognitive impairment associated with schizophrenia. Compound 30 demonstrated potent binding to PDE2A in brain tissue, dose responsive mouse brain cGMP increases, and reversal of N-methyl-d-aspartate (NMDA) antagonist-induced (MK-801, ketamine) effects in electrophysiology and working memory models in rats.

View Article and Find Full Text PDF
Article Synopsis
  • PDE2A inhibitors have shown potential in improving cognitive function in preclinical models, sparking interest in their further development.
  • Researchers developed a new, highly potent PDE2A inhibitor (PF-05085727) that effectively penetrates the brain and demonstrates significant biochemical changes related to PDE2A inhibition.
  • The compound also reverses cognitive impairments caused by NMDA antagonists in rodents, suggesting it could enhance NMDA signaling and holds promise for future clinical applications in cognition.
View Article and Find Full Text PDF

Unlabelled: The enzyme phosphodiesterase 2A (PF-05270430) is a potential target for development of novel therapeutic agents for the treatment of cognitive impairments. The goal of the present study was to evaluate the PDE2A ligand (18)F-PF-05270430, 4-(3-fluoroazetidin-1-yl)-7-methyl-5-(1-methyl-5-(4-(trifluoromethyl)phenyl)-1H-pyrazol-4-yl)imidazo[1,5-f][1,2,4]triazine, in nonhuman primates.

Methods: (18)F-PF-05270430 was radiolabeled by 2 methods via nucleophilic substitution of its tosylate precursor.

View Article and Find Full Text PDF

Objective: Peptide YY3-36 [PYY(3-36)] has shown efficacy in appetite suppression when dosed by injection modalities (intraperitoneal (IP)/subcutaneous). Transitioning to needle-free delivery, towards inhalation, often utilizes systemic pharmacokinetics as a key endpoint to compare different delivery methods and doses. Systemic pharmacokinetics were evaluated for PYY3-36 when delivered by IP, subcutaneous, and inhalation, the systemic pharmacokinetics were then used to select doses in an appetite suppression pharmacodynamic study.

View Article and Find Full Text PDF

Delivery of drug therapeutics across the blood-brain barrier is a challenging task for pharmaceutical scientists. Nasal-to-CNS drug delivery has shown promising results in preclinical efficacy models and investigatory human clinical trials. The further development of this technology with respect to the establishment of valid, predictable preclinical species models, translatable pharmacokinetic-pharmacodynamic relationships and definition of toxicology impact will help attract additional pharmaceutical investment in this drug-delivery approach.

View Article and Find Full Text PDF

Inhibitors of the Hedgehog signaling pathway have generated a great deal of interest in the oncology area due to the mounting evidence of their potential to provide promising therapeutic options for patients. Herein, we describe the discovery strategy to overcome the issues inherent in lead structure 1 that resulted in the identification of Smoothened inhibitor 1-((2R,4R)-2-(1H-benzo[d]imidazol-2-yl)-1-methylpiperidin-4-yl)-3-(4-cyanophenyl)urea (PF-04449913, 26), which has been advanced to human clinical studies.

View Article and Find Full Text PDF

Significant efforts through genomic approaches have been dedicated toward the identification of novel protein-protein interactions as promising therapeutic targets for indications such as Alzheimer's disease, Parkinson's disease and neuropsychiatric disorders. Additionally, the number of biotherapeutic agents entering the Pharmaceutical sector continues to increase and according to EvaluatePharma's "World Preview 2014" report, "the compounded annual growth rate of biologics is expected to be 8.5 percent from 2008-2014, eight to 10 times greater than the growth rate of small molecules".

View Article and Find Full Text PDF

The metabolism and disposition of 4-[4-(4-fluorophenoxy)-benzenesulfonylamino]tetrahydropyran-4-carboxylic acid hydroxyamide (CP-544439), a selective inhibitor of matrix metalloproteinase-13, was investigated in rats and dogs following oral administration of [(14)C]CP-544439. Both species showed quantitative recovery of the radiolabel, and feces was the major route of excretion. Whole-body autoradioluminography study in rats suggested distribution of CP-544439 in all tissues except central nervous system.

View Article and Find Full Text PDF