Publications by authors named "Tomoko Kamasaki"

Background: Influenza A viruses (IAVs) initially infect a few host cells before spreading to neighboring cells. However, the molecular mechanisms underlying this dissemination remain unclear. We have previously demonstrated that intracellular Ca plays a crucial role in facilitating IAV infection.

View Article and Find Full Text PDF

Allergen immunotherapy (AIT) is the only curative treatment for allergic diseases. However, AIT has many disadvantages related to efficiency, safety, long-term duration, and patient compliance. Dendritic cells (DCs) have an important role in antigen-specific tolerance induction; thus, DC-targeting strategies to treat allergies such as glutaraldehyde crosslinked antigen to mannoprotein (MAN) have been established.

View Article and Find Full Text PDF
Article Synopsis
  • - The emergence of the Omicron subvariant BA.5 of SARS-CoV-2 requires urgent investigation due to its rapid spread and the need for ongoing control measures.
  • - BA.5 exhibits enhanced fusogenicity and a greater ability to disrupt respiratory barriers compared to earlier subvariants BA.1 and BA.2, even though its in vitro growth rates are similar.
  • - In a hamster model, BA.5 shows slightly higher pathogenicity than other Omicron variants but less than the ancestral strain, along with improved virus spread and immune response activation.
View Article and Find Full Text PDF

Cell competition is a process by which unwanted cells are eliminated from tissues. Apical extrusion is one mode whereby normal epithelial cells remove transformed cells, but it remains unclear how this process is mechanically effected. In this study, we show that autophagic and endocytic fluxes are attenuated in RasV12-transformed cells surrounded by normal cells due to lysosomal dysfunction, and that chemical manipulation of lysosomal activity compromises apical extrusion.

View Article and Find Full Text PDF

In vertebrates, newly emerging transformed cells are often apically extruded from epithelial layers through cell competition with surrounding normal epithelial cells. However, the underlying molecular mechanism remains elusive. Here, using phospho-SILAC screening, we show that phosphorylation of AHNAK2 is elevated in normal cells neighboring RasV12 cells soon after the induction of RasV12 expression, which is mediated by calcium-dependent protein kinase C.

View Article and Find Full Text PDF

A small number of oncogenic mutated cells sporadically arise within the epithelial monolayer. Newly emerging Ras- or Src-transformed epithelial cells are often apically eliminated during competitive interactions between normal and transformed cells. Our recent electron microscopy (EM) analyses revealed that characteristic finger-like membrane protrusions are formed at the interface between normal and RasV12-transformed cells via the cdc42-formin-binding protein 17 (FBP17) pathway, potentially playing a positive role in intercellular recognition during apical extrusion.

View Article and Find Full Text PDF

At the initial stage of carcinogenesis, cell competition often occurs between newly emerging transformed cells and the neighboring normal cells, leading to the elimination of transformed cells from the epithelial layer. For instance, when RasV12-transformed cells are surrounded by normal cells, RasV12 cells are apically extruded from the epithelium. However, the underlying mechanisms of this tumor-suppressive process still remain enigmatic.

View Article and Find Full Text PDF

At the initial stage of carcinogenesis, newly emerging transformed cells are often eliminated from epithelial layers via cell competition with the surrounding normal cells. For instance, when surrounded by normal cells, oncoprotein RasV12-transformed cells are extruded into the apical lumen of epithelia. During cancer development, multiple oncogenic mutations accumulate within epithelial tissues.

View Article and Find Full Text PDF
Article Synopsis
  • Oncogenic mutations lead to the formation of multilayered epithelial structures in early cancer development, but the molecular mechanisms are not fully understood.
  • Research has shown that collagen XVII (COL17A1) and CD44 proteins accumulate in transformed epithelial cells, affecting cell behavior, resistance to cell death, and overall structure.
  • COL17A1 and CD44 play key roles in regulating metabolic pathways and maintaining cell survival, making them potential targets for early cancer diagnosis and treatment.
View Article and Find Full Text PDF

At the initial stage of carcinogenesis, transformation occurs in single cells within the epithelium. Recent studies have revealed that the newly emerging transformed cells are often apically eliminated from epithelial tissues. However, the underlying molecular mechanisms of this cancer preventive phenomenon still remain elusive.

View Article and Find Full Text PDF

The molecular mechanism that governs cytoskeleton-membrane interaction during animal cytokinesis remains elusive. Here, we investigated the dynamics and functions of ERM (Ezrin/Radixin/Moesin) proteins during cytokinesis in human cultured cells. We found that ezrin is recruited to the cleavage furrow through its membrane-associated domain in a cholesterol-dependent but largely Rho-independent manner.

View Article and Find Full Text PDF

Recent studies have revealed that newly emerging transformed cells are often apically extruded from epithelial tissues. During this process, normal epithelial cells can recognize and actively eliminate transformed cells, a process called epithelial defence against cancer (EDAC). Here, we show that mitochondrial membrane potential is diminished in RasV12-transformed cells when they are surrounded by normal cells.

View Article and Find Full Text PDF

During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission.

View Article and Find Full Text PDF

The central spindle is built during anaphase by coupling antiparallel microtubules (MTs) at a central overlap zone, which provides a signaling scaffold for the regulation of cytokinesis. The mechanisms underlying central spindle morphogenesis are still poorly understood. In this paper, we show that the MT depolymerase Kif2A controls the length and alignment of central spindle MTs through depolymerization at their minus ends.

View Article and Find Full Text PDF

The formation of a functional spindle requires microtubule (MT) nucleation from within the spindle, which depends on augmin. How augmin contributes to MT formation and organization is not known because augmin-dependent MTs have never been specifically visualized. In this paper, we identify augmin-dependent MTs and their connections to other MTs by electron tomography and 3D modeling.

View Article and Find Full Text PDF

The contractile ring, which is required for cytokinesis in animal and yeast cells, consists mainly of actin filaments. Here, we investigate the directionality of the filaments in fission yeast using myosin S1 decoration and electron microscopy. The contractile ring is composed of around 1,000 to 2,000 filaments each around 0.

View Article and Find Full Text PDF

Longitudinal F-actin cables are thought to be important for transporting materials for polarized cell growth in fission yeast. We show that most F-actin in the cables is oriented such that the barbed end faces the nearest cell tip during interphase; however, this directionality is reversed during mitosis. These orientations of F-actin ensure proper transport of materials to growing sites during these cell-cycle stages.

View Article and Find Full Text PDF

The yeast cell walls of the budding yeast Saccharomyces cerevisiae are well studied and the results show the existence of a framework composed of beta-1,3-glucan. It is reported that the cell wall of the fission yeast Schizosaccharomyces pombe has different components and our analysis by 13C-nuclear magnetic resonance (NMR) spectroscopy also showed there is alpha-1,3-glucan in its cell wall. To refine our understanding of the architecture of the yeast cell wall, we re-examined the cell wall glucans of S.

View Article and Find Full Text PDF