Publications by authors named "Ritsuko Arai"

BNIP3 and NIX are the main receptors for mitophagy, but their mechanisms of action remain elusive. Here, we used correlative light EM (CLEM) and electron tomography to reveal the tight attachment of isolation membranes (IMs) to mitochondrial protrusions, often connected with ER via thin tubular and/or linear structures. In BNIP3/NIX-double knockout (DKO) HeLa cells, the ULK1 complex and nascent IM formed on mitochondria, but the IM did not expand.

View Article and Find Full Text PDF

NRF2 is a transcription factor responsible for antioxidant stress responses that is usually regulated in a redox-dependent manner. p62 bodies formed by liquid-liquid phase separation contain Ser349-phosphorylated p62, which participates in the redox-independent activation of NRF2. However, the regulatory mechanism and physiological significance of p62 phosphorylation remain unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Autophagy plays a key role in regulating the degradation of specific biomolecular structures, such as p62/SQSTM1 bodies, to prevent diseases like cancer.
  • Researchers developed a new method to purify and analyze the components of p62 bodies in human cells, revealing that a complex called vault is involved in this process.
  • The study identifies a mechanism called vault-phagy, where major vault protein interacts with NBR1 to facilitate the degradation of vaults, and suggests that disruptions in this process may link to certain liver cancers.
View Article and Find Full Text PDF

During early embryogenesis of the nematode, Caenorhabditis elegans, the chromatin motion markedly decreases. Despite its biological implications, the underlying mechanism for this transition was unclear. By combining theory and experiment, we analyze the mean-square displacement (MSD) of the chromatin loci, and demonstrate that MSD-vs-time relationships in various nuclei collapse into a single master curve by normalizing them with the mesh size and the corresponding time scale.

View Article and Find Full Text PDF

In macroautophagy, membrane structures called autophagosomes engulf substrates and deliver them for lysosomal degradation. Autophagosomes enwrap a variety of targets with diverse sizes, from portions of cytosol to larger organelles. However, the mechanism by which autophagosome size is controlled remains elusive.

View Article and Find Full Text PDF

Kinesins are microtubule (MT)-based motors involved in various cellular functions including intracellular transport of vesicles and organelles, and dynamics of chromosomes during cell division. The fission yeast Schizosaccharomyces pombe expresses nine kinesin-like proteins (klps). Klp8 is one of them and has not been characterized yet though it has been reported to localize at the division site.

View Article and Find Full Text PDF

A number of drug-releasing contact lenses are currently being studied to address issues inherent in eye drops as a drug delivery method. In this study, we developed epinastine hydrochloride-releasing daily soft contact lenses for treatment of allergic conjunctivitis and examined their in vitro and in vivo performance. Preformed soft contact lenses with/without ionic functional groups were soaked in a solution of epinastine hydrochloride in phosphate-buffered saline to prepare epinastine hydrochloride-releasing soft contact lenses.

View Article and Find Full Text PDF

Autophagy-related organelles, including omegasomes, isolation membranes (or phagophores), autophagosomes, and autolysosomes, are characterized by dynamic changes in lipid membranes including morphology as well as their associated proteins. Therefore, it is critical to define and track membranous elements for identification and detailed morphological analyses of these organelles. However, it is often difficult to clearly observe these organelles with good morphology in conventional electron microscopy (EM), thus hampering 3D analyses and correlative light-electron microscopy (CLEM).

View Article and Find Full Text PDF

In differentiated cells, chromosomes are packed inside the cell nucleus in an organised fashion. In contrast, little is known about how chromosomes are packed in undifferentiated cells and how nuclear organization changes during development. To assess changes in nuclear organization during the earliest stages of development, we quantified the mobility of a pair of homologous chromosomal loci in the interphase nuclei of Caenorhabditis elegans embryos.

View Article and Find Full Text PDF

Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigated how high hydrostatic pressure (HPT) at 75 MPa for 30 minutes caused a phenomenon called HPT-induced chromosome condensation (HPT-CC) in the yeast Schizosaccharomyces pombe, leading to compacted chromosomal DNA without significantly affecting cell viability.
  • - HPT-CC was reversible, as the condensed state returned to normal when the treated cells were cultured post-treatment, and its occurrence was not linked to changes in the nuclear envelope or the cell cycle.
  • - The research found that HPT-CC was also present in another yeast, Saccharomyces cerevisiae, suggesting it acts as a temporary stress response mechanism to high hydrostatic pressure across yeast species.
View Article and Find Full Text PDF

SDS-PAGE is a basic method that has long been used for separation of proteins according to their molecular sizes. Despite its simplicity, it provides information on characteristics of proteins beyond their molecular masses because gel mobility of proteins often reflects their physicochemical properties and post-translational modifications. Here we report on a global analysis of gel mobility of the proteome, which we term the "mobilitome," covering 93.

View Article and Find Full Text PDF

On the basis of our previous study concerning the effect of high hydrostatic pressure treatment (HPT) on Escherichia coli FtsZ ring (bacterial cytoskeleton) formation, we aimed to determine the effect of HPT on the growth properties of a representative eukaryotic microbe, Schizosaccharomyces pombe, in relation to the behavior of genuine cytoskeletons. Microtubules were visualized with GFP-linked alpha-tubulin. Actin-related cytoskeletons were fluorescently stained with rhodamine-phalloidin.

View Article and Find Full Text PDF

Primer sets for a loop-mediated isothermal amplification (LAMP) method were developed to specifically identify each of the four Brettanomyces/Dekkera species, Dekkera anomala, Dekkera bruxellensis, Dekkera custersiana and Brettanomyces naardenensis. Each primer set was designed with target sequences in the ITS region of the four species and could specifically amplify the target DNA of isolates from beer, wine and soft drinks. Furthermore, the primer sets differentiated strains of the target species from strains belonging to other species, even within the genus Brettanomyces/Dekkera.

View Article and Find Full Text PDF

Cloning of the entire set of an organism's protein-coding open reading frames (ORFs), or 'ORFeome', is a means of connecting the genome to downstream 'omics' applications. Here we report a proteome-scale study of the fission yeast Schizosaccharomyces pombe based on cloning of the ORFeome. Taking advantage of a recombination-based cloning system, we obtained 4,910 ORFs in a form that is readily usable in various analyses.

View Article and Find Full Text PDF

The small GTPase Rho1 plays an essential role in controlling the organization of the actin cytoskeleton and synthesis of the cell wall in the fission yeast Schizosaccharomyces pombe. Here we studied the role of Rho5 whose primary structure is very similar to that of Rho1. It was found that elevated expression of Rho5 was able to compensate for the lethality of cells lacking Rho1.

View Article and Find Full Text PDF

Longitudinal F-actin cables are thought to be important for transporting materials for polarized cell growth in fission yeast. We show that most F-actin in the cables is oriented such that the barbed end faces the nearest cell tip during interphase; however, this directionality is reversed during mitosis. These orientations of F-actin ensure proper transport of materials to growing sites during these cell-cycle stages.

View Article and Find Full Text PDF

Background: Rho family small GTPases have been shown to be involved in various cellular activities, including the organization of actin cytoskeleton in eukaryotic cells. There are six rho genes in the fission yeast Schizosaccharomyces pombe. Cdc42 is known to control the polarity of the cell.

View Article and Find Full Text PDF

We identified a novel Rho gene rho3(+) and studied its interaction with diaphanous/formin for3(+) in the fission yeast Schizosaccharomyces pombe. Both rho3 null cells and for3 null cells showed defects in organization of not only actin cytoskeleton but also cytoplasmic microtubules (MTs). rho3 for3 double null cells had defects that were more severe than each single null cell: polarized growth was deficient in the double null cells.

View Article and Find Full Text PDF

Cells of the fission yeast Schizosaccharomyces pombe divide by the contraction of the F-actin ring formed at the medial region of the cell. We investigated the process of F-actin ring formation in detail using optical sectioning and three-dimensional reconstruction fluorescence microscopy. In wild-type cells, formation of an aster-like structure composed of F-actin cables and accumulation of F-actin cables were recognized at the medial cortex of the cell during prophase to metaphase.

View Article and Find Full Text PDF

The acquisition of drug-resistance is a major problem for cancer patients undergoing chemotherapy. To clarify genetic alterations in cancer cells that develop drug-resistance, comparative genomic hybridization (CGH) was applied to esophageal squamous cell carcinoma cell lines (SH-1V1, SH-1V2, SH-1V4 and SH-1V8) and chemoresistance-related genes in altered chromosomal regions were evaluated. These cell lines were derived from the parental SH-1 cell line, after multiple steps of selection by an increasing exposure to vindesine.

View Article and Find Full Text PDF