Lung cancer remains the leading cause of cancer-related deaths worldwide. Low-dose computed tomography (LD-CT) screening, combined with effective minimally invasive molecular testing such circulating microRNA, has the potential to reduce the burden of lung cancer. However, their clinical application requires further validation, including studies across diverse patient cohorts from different countries.
View Article and Find Full Text PDFBackground: Circulating microRNAs (c-miRs) were shown to be effective biomarkers for lung cancer early detection. However, the understanding of c-miRs origin and their biological functions still remains elusive.
Methods: We analysed miRNA expression in a large panel of lung cancer (LC) and hematopoietic cell lines (N = 252; CCLE database) coupled with c-miR profile of a large cohort of serum samples (N = 975), from high-risk subjects underwent annual LD-CT for 5 years.
Cystic fibrosis (CF) is a genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, leading to chronic, unresolved inflammation of the airways due to uncontrolled recruitment of polymorphonuclear leukocytes (PMNs). Evidence indicates that CFTR loss-of-function, in addition to promoting a pro-inflammatory phenotype, is associated with an increased risk of developing cancer, suggesting that CFTR can exert tumor-suppressor functions. Three-dimensional (3D) in vitro culture models, such as the CF lung airway-on-a-chip, can be suitable for studying PMN recruitment, as well as events of cancerogenesis, that is epithelial cell invasion and migration, in CF.
View Article and Find Full Text PDFSeveral different signaling pathways that regulate cell proliferation and differentiation are initiated by binding of ligands to cell-surface and membrane-bound enzyme-linked receptors, such as receptor tyrosine kinases and serine-threonine kinases. They prompt phosphorylation of tyrosine and serine-threonine residues and initiate downstream signaling pathways and priming of intracellular molecules that convey the signal in the cytoplasm and nucleus, with transcriptional activation of specific genes enriching cell growth and survival-related cascades. These cell processes are rhythmically driven by molecular clockworks endowed in every cell type and when deregulated play a crucial role in cancer onset and progression.
View Article and Find Full Text PDFUnlabelled: Patients with COVID-19 have coagulation and platelet disorders, with platelet alterations and thrombocytopenia representing negative prognostic parameters associated with severe forms of the disease and increased lethality.
Methods: The aim of this study was to study the expression of platelet glycoprotein IIIa (CD61), playing a critical role in platelet aggregation, together with TRL-2 as a marker of innate immune activation.
Results: A total of 25 patients were investigated, with the majority (24/25, 96%) having co-morbidities and dying from a fatal form of SARS-CoV-2(+) infection (COVID-19+), with 13 men and 12 females ranging in age from 45 to 80 years.
Monocytes (Mos) are crucial in the evolution of metabolic dysfunction-associated steatotic liver disease (MASLD) to metabolic dysfunction-associated steatohepatitis (MASH), and immunometabolism studies have recently suggested targeting leukocyte bioenergetics in inflammatory diseases. Here, we reveal a peculiar bioenergetic phenotype in circulating Mos of patients with MASH, characterized by high levels of glycolysis and mitochondrial (mt) respiration. The enhancement of mt respiratory chain activity, especially complex II (succinate dehydrogenase [SDH]), is unbalanced toward the production of reactive oxygen species (ROS) and is sustained at the transcriptional level with the involvement of the AMPK-mTOR-PGC-1α axis.
View Article and Find Full Text PDFNeuronal PAS domain protein 2 (NPAS2) is a hemeprotein comprising a basic helix-loop-helix domain (bHLH) and two heme-binding sites, the PAS-A and PAS-B domains. This protein acts as a pyridine nucleotide-dependent and gas-responsive CO-dependent transcription factor and is encoded by a gene whose expression fluctuates with circadian rhythmicity. NPAS2 is a core cog of the molecular clockwork and plays a regulatory role on metabolic pathways, is important for the function of the central nervous system in mammals, and is involved in carcinogenesis as well as in normal biological functions and processes, such as cardiovascular function and wound healing.
View Article and Find Full Text PDFTo the current data, there have been 6,955,141 COVID-19-related deaths worldwide, reported to WHO. Toll-like receptors (TLRs) implicated in bacterial and virus sensing could be a crosstalk between activation of persistent innate-immune inflammation, and macrophage's sub-population alterations, implicated in cytokine storm, macrophage over-activation syndrome, unresolved Acute Respiratory Disease Syndrome (ARDS), and death. The aim of this study is to demonstrate the association between Toll-like-receptor-4 (TLR-4)-induced inflammation and macrophage imbalance in the lung inflammatory infiltrate of lethal COVID-19 disease.
View Article and Find Full Text PDFBackground: T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy, characterized by restricted cellular subsets with asymmetrically enriched leukemia initiating cell (LIC) activity. Nonetheless, it is still unclear which signaling programs promote LIC maintenance and progression.
Methods: Here, we evaluated the role of the biological clock in the regulation of the molecular mechanisms and signaling pathways impacting the cellular dynamics in T-ALL through an integrated experimental approach including gene expression profiling of shRNA-modified T-ALL cell lines and Chromatin Immunoprecipitation Sequencing (ChIP-Seq) of leukemic cells.
Front Med (Lausanne)
May 2023
Objectives: We validated a screening protocol in which thoracic ultrasound (TUS) acts as a first-line complementary imaging technique in selecting patients which may deserve a second-line low-dose high resolution computed tomography (HRCT) scan among a population of asymptomatic high-risk subjects for interstitial lung abnormalities (ILA) and lung cancer. Due to heavy environmental pollution burden, the district Tamburi of Taranto has been chosen as "case study" for this purpose.
Methods: From July 2018 to October 2020, 677 patients aged between 45 and 65 year and who had been living in the Tamburi district of Taranto for at least 10 years were included in the study.
Locally advanced non-small cell lung cancer (NSCLC) is frequent at diagnosis and requires multimodal treatment approaches. Neoadjuvant chemotherapy (NACT) followed by surgery is the treatment of choice for operable locally advanced NSCLC (Stage IIIA). However, the majority of patients are NACT-resistant and show persistent lymph nodal metastases (LNmets) and an adverse outcome.
View Article and Find Full Text PDFT-cell acute lymphoblastic leukemia (T-ALL) is an aggressive T-cell malignancy characterized by genotypically-defined and phenotypically divergent cell populations, governed by adaptive landscapes. Clonal expansions are associated to genetic and epigenetic events, and modulation of external stimuli that affect the hierarchical structure of subclones and support the dynamics of leukemic subsets. Recently, small extracellular vesicles (sEV) such as exosomes were also shown to play a role in leukemia.
View Article and Find Full Text PDFThe circadian gene Timeless (TIM) provides a molecular bridge between circadian and cell cycle/DNA replication regulatory systems and has been recently involved in human cancer development and progression. However, its functional role in colorectal cancer (CRC), the third leading cause of cancer-related deaths worldwide, has not been fully clarified yet. Here, the analysis of two independent CRC patient cohorts (total 1159 samples) reveals that loss of TIM expression is an unfavorable prognostic factor significantly correlated with advanced tumor stage, metastatic spreading, and microsatellite stability status.
View Article and Find Full Text PDFLung cancer burden is increasing, with 2 million deaths/year worldwide. Current limitations in early detection impede lung cancer diagnosis when the disease is still localized and thus more curable by surgery or multimodality treatment. Liquid biopsy is emerging as an important tool for lung cancer early detection and for monitoring therapy response.
View Article and Find Full Text PDFLung adenocarcinoma (LUAD) is the main non-small-cell lung cancer diagnosed in ~40-50% of all lung cancer cases. Despite the improvements in early detection and personalized medicine, even a sizable fraction of patients with early-stage LUAD would experience disease relapses and adverse prognosis. Previous reports indicated the existence of LUAD molecular subtypes characterized by specific gene expression and mutational profiles, and correlating with prognosis.
View Article and Find Full Text PDFLung cancer burden can be reduced by adopting primary and secondary prevention strategies such as anti-smoking campaigns and low-dose CT screening for high risk subjects (aged >50 and smokers >30 packs/year). Recent CT screening trials demonstrated a stage-shift towards earlier stage lung cancer and reduction of mortality (~20%). However, a sizable fraction of patients (30-50%) with early stage disease still experience relapse and an adverse prognosis.
View Article and Find Full Text PDFAcute promyelocytic leukemia (APL) is a hematological disease characterized by a balanced reciprocal translocation that leads to the synthesis of the oncogenic fusion protein PML-RARα. APL is mainly managed by a differentiation therapy based on the administration of all- retinoic acid (ATRA) and arsenic trioxide (ATO). However, therapy resistance, differentiation syndrome, and relapses require the development of new low-toxicity therapies based on the induction of blasts differentiation.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFBackground: Metabolic reprogramming towards aerobic glycolysis in cancer supports unrestricted cell proliferation, survival and chemoresistance. The molecular bases of these processes are still undefined. Recent reports suggest crucial roles for microRNAs.
View Article and Find Full Text PDFRecent advances in radiological imaging and genomic analysis are profoundly changing the way to manage lung cancer patients. Screening programs which couple lung cancer risk prediction models and low-dose computed tomography (LDCT) recently showed their effectiveness in the early diagnosis of lung tumors. In addition, the emerging field of radiomics is revolutionizing the approach to handle medical images, i.
View Article and Find Full Text PDFCentrosome anomalies contribute to tumorigenesis, but it remains unclear how they are generated in lethal cancer phenotypes. Here, it is demonstrated that human microsatellite instable (MSI) and BRAF-mutant colorectal cancers with a lethal rhabdoid phenotype are characterized by inactivation of centrosomal functions. A splice site mutation that causes an unbalanced dosage of rootletin (CROCC), a centrosome linker component required for centrosome cohesion and separation at the chromosome 1p36.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
January 2017
The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2-Dimensional Differential InGel Electrophoresis (2-D DIGE) followed by Liquid Chromatography (LC)-tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression.
View Article and Find Full Text PDFAltered functioning of the biological clock is involved in cancer onset and progression. MicroRNAs (miRNAs) interact with the clock genes modulating the function of genetically encoded molecular clockworks. Collaborative interactions may take place within the coding-noncoding RNA regulatory networks.
View Article and Find Full Text PDFCladosporols are secondary metabolites from Cladosporium tenuissimum characterized for their ability to control cell proliferation. We previously showed that cladosporol A inhibits proliferation of human colon cancer cells through a PPARγ-mediated modulation of gene expression. In this work, we investigated cladosporol B, an oxidate form of cladosporol A, and demonstrate that it is more efficient in inhibiting HT-29 cell proliferation due to a robust G0/G1-phase arrest and p21(waf1/cip1) overexpression.
View Article and Find Full Text PDF