Biochim Biophys Acta Mol Basis Dis
January 2019
Metastatic cancer cells are highly plastic for the expression of different tumor phenotype hallmarks and organotropism. This plasticity is highly regulated but the dynamics of the signaling processes orchestrating the shift from one cell phenotype and metastatic organ pattern to another are still largely unknown. The scaffolding protein NHERF1 has been shown to regulate the expression of different neoplastic phenotypes through its PDZ domains, which forms the mechanistic basis for metastatic organotropism.
View Article and Find Full Text PDFAltered functioning of the biological clock is involved in cancer onset and progression. MicroRNAs (miRNAs) interact with the clock genes modulating the function of genetically encoded molecular clockworks. Collaborative interactions may take place within the coding-noncoding RNA regulatory networks.
View Article and Find Full Text PDFAlterations in the balance of mRNA and microRNA (miRNA) expression profiles contribute to the onset and development of colorectal cancer. The regulatory functions of individual miRNA-gene pairs are widely acknowledged, but group effects are largely unexplored. We performed an integrative analysis of mRNA-miRNA and miRNA-miRNA interactions using high-throughput mRNA and miRNA expression profiles obtained from matched specimens of human colorectal cancer tissue and adjacent non-tumorous mucosa.
View Article and Find Full Text PDFBiochim Biophys Acta
August 2016
In the past few years mounting evidences have highlighted the tight correlation between circadian rhythms and metabolism. Although at the organismal level the central timekeeper is constituted by the hypothalamic suprachiasmatic nuclei practically all the peripheral tissues are equipped with autonomous oscillators made up by common molecular clockworks represented by circuits of gene expression that are organized in interconnected positive and negative feed-back loops. In this study we exploited a well-established in vitro synchronization model to investigate specifically the linkage between clock gene expression and the mitochondrial oxidative phosphorylation (OxPhos).
View Article and Find Full Text PDFThe biological hard-wiring of 24-hour rhythmicity relies on the circadian clock circuitry, made of peripheral oscillators operated by molecular clockworks and synchronized through humoral and neural outputs by central oscillators located in the hypothalamic suprachiasmatic nuclei. Metabolically active tissues, such as the liver, are entrained also by local cues represented by metabolic flux related to feeding. The mechanics of the molecular clockwork have been explored by studies using cell lines and wild type or genetically engineered mouse models.
View Article and Find Full Text PDFDeficits in neuroendocrine-immune system functioning, including alterations in pineal and thymic glands, contribute to aging-associated diseases. This study looks at ageing-associated alterations in pineal and thymic gland functioning evaluating common signaling molecules present in both human and animal pinealocytes and thymocytes: endocrine cell markers (melatonin, serotonin, pCREB, AANAT, CGRP, VIP, chromogranin Ð); cell renovation markers (p53, AIF, Ki67), matrix metalloproteinases (MMP2, MMP9) and lymphocytes markers (CD4, CD5, CD8, CD20). Pineal melatonin is decreased, as is one of the melatonin pathway synthesis enzymes in the thymic gland.
View Article and Find Full Text PDFUmbilical cord blood (UCB) contains hematopoietic stem cells and multipotent mesenchymal cells useful for treatment in malignant/nonmalignant hematologic-immunologic diseases and regenerative medicine. Transplantation outcome is correlated with cord blood volume (CBV), number of total nucleated cells (TNC), CD34+ progenitor cells and colony forming units in UCB donations. Several studies have addressed the role of maternal/neonatal factors associated with the hematopoietic reconstruction potential of UCB, including: gestational age, maternal parity, newborn sex and birth weight, placental weight, labor duration and mode of delivery.
View Article and Find Full Text PDFBackground: Circadian disruption and deranged molecular clockworks are involved in carcinogenesis. The cryptochrome genes (CRY1 and CRY2) encode circadian proteins important for the functioning of biological oscillators. Their expression in human colorectal cancer (CRC) and in colon cancer cell lines has not been evaluated so far.
View Article and Find Full Text PDFBiochim Biophys Acta
April 2016
Physiology of living beings show circadian rhythms entrained by a central timekeeper present in the hypothalamic suprachiasmatic nuclei. Nevertheless, virtually all peripheral tissues hold autonomous molecular oscillators constituted essentially by circuits of gene expression that are organized in negative and positive feed-back loops. Accumulating evidence reveals that cell metabolism is rhythmically controlled by cell-intrinsic molecular clocks and the specific pathways involved are being elucidated.
View Article and Find Full Text PDFSimultaneous analysis of the transcripts of thousands of genes by cDNA microarrays allows the identification of genetic regulatory mechanisms involved in disease pathophysiology. The circadian clock circuitry controls essential cell processes and the functioning of organ systems, which are characterized by rhythmic variations with 24-hour periodicity. The derangement of these processes is involved in the basic mechanisms of inflammatory, metabolic, degenerative and neoplastic diseases.
View Article and Find Full Text PDFPancreatic cancer (PC), the fourth leading cause of cancer-related deaths, is characterized by high aggressiveness and resistance to chemotherapy. Pancreatic carcinogenesis is kept going by derangement of essential cell processes, such as proliferation, apoptosis, metabolism and autophagy, characterized by rhythmic variations with 24-h periodicity driven by the biological clock. We assessed the expression of the circadian genes ARNLT, ARNLT2, CLOCK, PER1, PER2, PER3, CRY1, CRY2 and the starvation-activated histone/protein deacetylase SIRT1 in 34 matched tumor and non-tumor tissue specimens of PC patients, and evaluated in PC derived cell lines if the modulation of SIRT1 expression through starvation could influence the temporal pattern of expression of the circadian genes.
View Article and Find Full Text PDFThe group of diseases classified as seronegative spondyloarthritis or enthesoarthritis is characterized by typical osteoarticular and extra-articular manifestations. Diverse patterns of disease can affect different members of the same family and may show different features in the same patient, with clinical overlaps thwarting the differential diagnosis. An anatomo-pathological hallmark in enthesoarthritis is the inflammatory process in the synovio-entheseal sites.
View Article and Find Full Text PDFTriple negative breast cancer (TNBC) patients cannot be treated with endocrine therapy or targeted therapies due to lack of related receptors. These patients overexpress the epidermal growth factor receptor (EGFR), but are resistant to tyrosine kinase inhibitors (TKIs) and anti-EGFR therapies. Mechanisms suggested for resistance to TKIs include EGFR independence, mutations and alterations in EGFR and in its downstream signalling pathways.
View Article and Find Full Text PDFAutoimmune diseases are characterized by an insufficiency of immune tolerance and, although treated with a number of useful drugs, may need more unconventional therapeutic strategies for their more severe presentations. Among such unconventional therapeutic approaches, stem cell autograft and allograft have been used, with the aim of stimulating disease remission by modifying the pathogenic mechanisms that induce anomalous responses against self-antigens. Autologous transplantation is performed with the purpose of retuning autoimmune cells, whereas allogeneic transplantation is performed with the purpose of replacing anomalous immune effectors and mediators.
View Article and Find Full Text PDFBehçet syndrome is a chronic disease hallmarked by inflammation of the blood vessels that is related to an autoimmune reaction caused by inherited susceptibility due to specific genes and environmental factors, probably components of infectious microorganisms, which turn on or get going the disease in genetically susceptible subjects. The more common clinical expression of the disease is represented by a triple-symptom complex of recurrent oral aphthous ulcers, genital ulcers, and uveitis, sometimes associated with inflammatory arthritis, phlebitis, iritis, as well as inflammation of the digestive tract, brain, and spinal cord. The treatment strategies used to manage the manifestations of Behçet syndrome have gradually progressed, and a number of new therapeutic resources have been implemented in recent years, allowing better control of pathogenic mechanisms, reducing symptoms and suffering, and ameliorating patient's outcome.
View Article and Find Full Text PDFPseudomonas aeruginosa infections of the airway cells decrease apical expression of both wild-type (wt) and F508del CFTR through the inhibition of apical endocytic recycling. CFTR endocytic recycling is known to be regulated by its interaction with PDZ domain containing proteins. Recent work has shown that the PDZ domain scaffolding protein NHERF1 finely regulates both wt and F508delCFTR membrane recycling.
View Article and Find Full Text PDFDegradation of the extracellular matrix (ECM) is a critical step of tumor cell invasion and requires protease-dependent proteolysis focalized at the invadopodia where the proteolysis of the ECM occurs. Most of the extracellular proteases belong to serine- or metallo-proteases and the invadopodia is where protease activity is regulated. While recent data looking at global protease activity in the growth medium reported that their activity and role in invasion is dependent on Na+/H+ exchanger 1 (NHE1)-driven extracellular acidification, there is no data on this aspect at the invadopodia, and an open question remains whether this acid extracellular pH (pHe) activation of proteases in tumor cells occurs preferentially at invadopodia.
View Article and Find Full Text PDFExtracellular matrix (ECM) degradation is a critical process in tumor cell invasion and requires matrix degrading protrusions called invadopodia. The Na(+)/H(+) exchanger (NHE1) has recently been shown to be fundamental in the regulation of invadopodia actin cytoskeleton dynamics and activity. However, the structural link between the invadopodia cytoskeleton and NHE1 is still unknown.
View Article and Find Full Text PDFThe degradation of the extracellular matrix by cancer cells represents an essential step in metastatic progression and this is performed by cancer cell structures called invadopodia. NaV1.5 (also known as SCN5A) Na(+) channels are overexpressed in breast cancer tumours and are associated with metastatic occurrence.
View Article and Find Full Text PDFPrevious studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na(+)/H(+) exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation.
View Article and Find Full Text PDF