Publications by authors named "Ting-Lin Yen"

Traumatic brain injury (TBI) in the elderly is frequently associated with worsened neurological outcomes and prolonged recovery, yet the age-specific molecular mechanisms driving this vulnerability remain poorly understood. Aging is characterized by increased oxidative stress and chronic neuro-inflammation, both of which may amplify the brain's susceptibility to injury. In this study, we identify spermine oxidase (SMOX), a polyamine-catabolizing enzyme that produces reactive oxygen species, as a key mediator linking oxidative stress and neuro-inflammation to age-dependent TBI susceptibility.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) play pivotal roles in tumor progression and metastasis by mediating intercellular communication within the tumor microenvironment. In this study, we identified two novel EX cargo proteins-UBE2NL and HIST2H3PS2-derived from highly aggressive epithelial ovarian cancer (EOC) cells and mesenchymal-type ovarian stromal progenitor cells (MSC-OCSPCs) but absent in less aggressive SKOV3 cells. Quantitative proteomic profiling via LC-MS/MS and TCGA-integrated analysis revealed that high expression of these genes correlated with advanced tumor stages and poor overall survival in EOC, and high HIST2H3PS2 expression predicted poor survival in endometrial cancer (EC).

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has left an indelible mark on the world, with mounting evidence suggesting that it not only posed acute challenges to global healthcare systems but has also unveiled a complex array of long-term consequences, particularly cognitive impairment (CI). As the persistence of post-COVID-19 neurological syndrome could evolve into the next public health crisis, it is imperative to gain a better understanding of the intricate pathophysiology of CI in COVID-19 patients and viable treatment strategies.

Methods: This comprehensive review explores the pathophysiology and management of cognitive impairment across the phases of COVID-19, from acute infection to Long-COVID, by synthesizing findings from clinical, preclinical, and mechanistic studies to identify key contributors to CI, as well as current therapeutic approaches.

View Article and Find Full Text PDF

Inflammation, a fundamental response to infection and injury, involves interactions among immune cells and signaling molecules. Dysregulated inflammation contributes to diseases such as autoimmune disorders and cancer. Interleukin-1 beta (IL-1β), produced by macrophages in response to lipoteichoic acid (LTA) from Gram-positive bacteria, is a key inflammatory mediator.

View Article and Find Full Text PDF

Chitinase-3-like-1 (CHI3L1) is an evolutionarily conserved protein involved in key biological processes, including tissue remodeling, angiogenesis, and neuroinflammation. It has emerged as a significant player in various neurodegenerative diseases and brain disorders. Elevated CHI3L1 levels have been observed in neurological conditions such as traumatic brain injury (TBI), Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), Creutzfeldt-Jakob disease (CJD), multiple sclerosis (MS), Neuromyelitis optica (NMO), HIV-associated dementia (HAD), Cerebral ischemic stroke (CIS), and brain tumors.

View Article and Find Full Text PDF

Psychiatric disorders pose a significant global health challenge, exacerbated by the COVID-19 pandemic and insufficiently addressed by the current treatments. This review explores the emerging role of bile acids and the TGR5 receptor in the pathophysiology of psychiatric conditions, emphasizing their signaling within the gut-brain axis. We detail the synthesis and systemic functions of bile acids, their transformation by gut microbiota, and their impact across various neuropsychiatric disorders, including major depressive disorder, general anxiety disorder, schizophrenia, autism spectrum disorder, and bipolar disorder.

View Article and Find Full Text PDF

Background: Platelets, a type of anucleated cell, play a crucial role in cardiovascular diseases (CVDs). Therefore, targeting platelet activation is essential for mitigating CVDs. Endogenous agonists, such as collagen, activate platelets by initiating signal transduction through specific platelet receptors, leading to platelet aggregation.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide, and its pathophysiology is characterized by oxidative stress and inflammation. Despite extensive research, effective treatments for TBI remain elusive. Recent studies highlighted the critical interplay between TBI and circadian rhythms, but the detailed regulation remains largely unknown.

View Article and Find Full Text PDF

Our study explores the role of cancer-derived extracellular exosomes (EXs), particularly focusing on collagen alpha-3 (VI; COL6A3), in facilitating tumor dissemination and metastasis in epithelial ovarian cancer (EOC). We found that COL6A3 is expressed in aggressive ES2 derivatives, SKOV3 overexpressing COL6A3 (SKOV3/COL6A3), and mesenchymal-type ovarian carcinoma stromal progenitor cells (MSC-OCSPCs), as well as their EXs, but not in less aggressive SKOV3 cells or ES2 cells with COL6A3 knockdown (ES2/shCOL6A3). High COL6A3 expression correlates with worse overall survival among EOC patients, as evidenced by TCGA and GEO data analysis.

View Article and Find Full Text PDF

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent.

View Article and Find Full Text PDF

Platelets assume a pivotal role in the cardiovascular diseases (CVDs). Thus, targeting platelet activation is imperative for mitigating CVDs. Ginkgetin (GK), from Ginkgo biloba L, renowned for its anticancer and neuroprotective properties, remains unexplored concerning its impact on platelet activation, particularly in humans.

View Article and Find Full Text PDF

Platelets play a vital role in the formation of dangerous arterial thrombosis. Platelets are activated by adhesive proteins or soluble agonists through their specific receptors. The receptor-mediated signaling pathways lead to common signaling events, which result in shape changes and inside-out signaling, leading fibrinogen binding to glycoprotein IIb/IIIa complex (integrin αβ).

View Article and Find Full Text PDF

Background: Platelets play a crucial role in cardiovascular diseases (CVDs) and are activated by endogenous agonists like collagen. These agonists initiate signal transduction through specific platelet receptors, resulting in platelet aggregation. Glabridin, a prenylated isoflavonoid found in licorice root, is known for its significance in metabolic abnormalities.

View Article and Find Full Text PDF

Aims: Platelet activation plays a central role in arterial thrombosis. Platelets are activated by adhesive proteins (i.e.

View Article and Find Full Text PDF

The incidence of traumatic brain injury (TBI) increases dramatically with advanced age and accumulating evidence indicates that age is one of the important predictors of an unfavorable prognosis after brain trauma. Unfortunately, thus far, evidence-based effective therapeutics for geriatric TBI is limited. By using middle-aged animals, we first confirm that there is an age-related change in TBI susceptibility manifested by increased inflammatory events, neuronal death and impaired functional outcomes in motor and cognitive behaviors.

View Article and Find Full Text PDF
Article Synopsis
  • * Current stroke treatments, including mechanical thrombectomy and tissue plasminogen activator, pose risks of complications such as bleeding and brain swelling, which limits their use.
  • * New monoclonal antibody therapies, targeting specific proteins involved in stroke pathology, are being tested in clinical trials and could improve treatment options for cerebral ischemia, especially if strategies to enhance their ability to cross the blood-brain barrier are developed.
View Article and Find Full Text PDF

Aberrant CpG-island methylation affects ovarian cancer progression. The promotor methylation changes at tumor suppressive genes in ovarian cancer stromal progenitor cells (OCSPCs) and epithelial ovarian cancer (EOC) tissues and their clinical implication remains unexplored. We systemically analyzed the promoter methylation status of 40 tumor suppressor genes (TSGs) associated with cancer in paired epithelial-like and mesenchymal-like OCSPCs and ovarian cancer cells by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA).

View Article and Find Full Text PDF

Inflammation is a major root of several diseases such as allergy, cancer, Alzheimer's, and several others, and the present state of existing drugs provoked researchers to search for new treatment strategies. Plants are regarded to be unique sources of active compounds holding pharmacological properties, and they offer novel designs in the development of therapeutic agents. Therefore, this study aimed to explore the anti-inflammatory mechanism of esculetin in lipoteichoic acid (LTA)-induced macrophage cells (RAW 264.

View Article and Find Full Text PDF

Lipoteichoic acid (LTA) is a key cell wall component and virulence factor of Gram-positive bacteria. LTA contributes a major role in infection and it mediates inflammatory responses in the host. Rutaecarpine, an indolopyridoquinazolinone alkaloid isolated from has shown a variety of fascinating biological properties such as anti-thrombotic, anticancer, anti-obesity and thermoregulatory, vasorelaxing activity.

View Article and Find Full Text PDF

Ovarian clear cell cancer stem-like/spheroid cells (OCCCSCs) were associated with recurrence, metastasis, and chemoresistance in ovarian clear cell carcinoma (OCCC). We evaluated the anti-tumor effects of 5-aza-2-deoxycytidine (5-aza-dC) combined with everolimus (RAD001) on human OCCC. We investigated parental OCCCSCs and paclitaxel-resistant cell lines derived from OCCCSCs and .

View Article and Find Full Text PDF

Periodontal disease (PD) is one of the most prevalent disorders globally and is strongly associated with many other diseases. Inflammatory bowel disease (IBD), an inflammatory condition of the colon and the small intestine, is reported to be associated with PD through undetermined mechanisms. We analyzed taxonomic assignment files from the Crohn's Disease Viral and Microbial Metagenome Project (PRJEB3206).

View Article and Find Full Text PDF

Sepsis is a state of host immune response triggered by virus or bacterial infection, in which the extent of regional and systemic inflammation and companion counter-inflammatory reactions determines disease outcomes. Probiotics are known for the immunomodulatory effect on allergic disorders, but it is not clear whether the beneficiary effect extends to sepsis and increases survival. In this mouse model, we injected intraperitoneally lipopolysaccharides (LPS) to induce sepsis, and investigated whether the pretreatment of GG (LGG) contributed to host survival and examined the alteration of the gut microbiota and blood cytokines/chemokines profile before sepsis induction.

View Article and Find Full Text PDF
Article Synopsis
  • The blood-brain barrier (BBB) is crucial for protecting the brain and maintaining homeostasis, making it a key target for drug delivery systems in treating neurological disorders.
  • Current treatments often have limitations such as drug toxicity and poor specificity, but advancements in nanodrug delivery are addressing these issues.
  • Solid lipid nanoparticles (SLNs) are a promising new method for delivering drugs across the BBB, offering controlled release, prolonged circulation, targeted action, and reduced toxicity for various CNS conditions like Alzheimer's, Parkinson's, and more.
View Article and Find Full Text PDF

The expression of collagen VI in primary ovarian tumors may correlate with tumor grade and response to chemotherapy. We have sought to elucidate the role of collagen VI in promoting ovarian cancer tumor growth and metastasis. Here we examined the effects of collagen VI on ovarian carcinoma stromal progenitor cells (OCSPCs).

View Article and Find Full Text PDF