Publications by authors named "Ting-Hsiang Chiu"

Second near-infrared (NIR-II) responsive hydrogels have shown significant potential in biomedical applications due to their excellent remote actuation property and the high tissue penetrations of the NIR-II light. Nevertheless, hydrogels with a single NIR-II light response may not meet the diverse requirements and complex conditions of clinical applications. Here, a novel multi-responsive nanocomposite hydrogel with enhanced suitability for controlled drug release is developed.

View Article and Find Full Text PDF

Lanthanide-containing luminescent hydrogels have shown potential for sensing and imaging applications. Nonetheless, integrating lanthanide ions or complexes into the polymer matrix often results in the poor stability and mechanical strength of the hydrogels. This work presents an innovative approach to fabricating luminescent hydrogels with three dynamic cross-links: imine bond, boronate ester bond, and metal-ligand coordination.

View Article and Find Full Text PDF

Poly(polyol sebacate) (PPS) polymer family has been recognized as promising biomaterials for biomedical applications with their characteristics of easy production, elasticity, biodegradation, and cytocompatibility. Poly(xylitol sebacate)-co-poly(ethylene glycol) (PXS-co-PEG) has been developed to fabricate PPS-based hydrogels; however, current PXS-co-PEG hydrogels presented limited properties and functions due to the limitations of the crosslinkers and crosslinking chemistry used in the hydrogel formation. Here, we fabricate a new type of PXS-co-PEG hydrogels through the use of multifunctional crosslinkers as well as dynamic bonds.

View Article and Find Full Text PDF

Piperic acid derivatives were found to affect the islet amyloid polypeptide (IAPP) aggregation process. Structure-activity relationship studies revealed that PAD-13 was an efficient molecular modulator to accelerate IAPP fibril formation by promoting primary and secondary nucleation and reducing its antimicrobial activity.

View Article and Find Full Text PDF

Hydrogels have been demonstrated as smart drug carriers to recognize the tumor microenvironment for cancer treatment, where the dynamic crosslinks in the hydrogel network contribute to the stimuli-responsive features but also result in poor stability and weak mechanical property of the hydrogels. Here, phenylboronic acid-grafted polyethyleneimine (PBA-PEI)-modified gelatin (PPG) was synthesized to crosslink alginate dialdehyde (ADA) through imine bonds and boronate ester bonds, and then calcium ions (Ca) were added to introduce the third calcium-carboxylate crosslinking in the network to form the triple-crosslinked PPG/ADA-Ca hydrogels. Given the three types of dynamic bonds in the network, PPG/ADA-Ca hydrogels possessed a self-healing manner, stimuli-responsiveness, and better mechanical properties compared to single- or double-crosslinked hydrogels.

View Article and Find Full Text PDF

Alginate is a biopolymer that can be crosslinked with calcium ions to fabricate cytocompatible hydrogels. However, using calcium ions to crosslink alginate provides limited properties and functions to alginate hydrogels, restricting their biomedical applications. Here, phenylboronic acid-functionalized polyethyleneimine (PBA-PEI) was developed to introduce two orthogonal dynamic covalent crosslinks in the alginate hydrogels, where PBA-PEI was used to crosslink alginate dialdehyde (ADA) through imine bonds and boronate ester bonds.

View Article and Find Full Text PDF

Microorganisms easily adhere to the surface of substrates and further form biofilms, which present problems in various fields. Therefore, the development of surfaces with antimicrobial adhesion or viability is a promising approach. In this study, we were committed to develop a rapid sterilizing coating.

View Article and Find Full Text PDF