A finite element model of the local mechanical response of a filled polymer composite to uniaxial compression is presented. The interfacial layer between filler particles and polymer matrix is explicitly modeled as a third phase of the composite. Unit cells containing one or several anisometric filler particles surrounded by interface shells are considered.
View Article and Find Full Text PDFA finite-element model of the mechanical response of a magnetoactive elastomer (MAE) volume element is presented. Unit cells containing a single ferromagnetic inclusion with geometric and magnetic anisotropy are considered. The equilibrium state of the cell is calculated using the finite-element method and cell energy minimization.
View Article and Find Full Text PDFPolymers (Basel)
September 2022
A review of the latest theoretical advances in the description of magnetomechanical effects and phenomena observed in magnetoactive elastomers (MAEs), i.e., polymer networks filled with magnetic micro- and/or nanoparticles, under the action of external magnetic fields is presented.
View Article and Find Full Text PDF