Publications by authors named "Timothy D Wiggin"

Sleep disturbances are associated with poor long-term memory (LTM) formation, yet the underlying cell types and neural circuits involved have not been fully decoded. Dopamine neurons (DANs) are involved in memory processing at multiple stages. Here, using both male and female flies, , we show that, during the first few hours of memory consolidation, disruption of basal activity of a small subset of protocerebral anterior medial DANs (PAM-DANs), by either brief activation or inhibition of the two dorsal posterior medial (DPM) neurons, impairs 24 h LTM.

View Article and Find Full Text PDF

The ellipsoid body (EB) is a major structure of the central complex of the brain. Twenty-two subtypes of EB ring neurons have been identified based on anatomic and morphologic characteristics by light-level microscopy and EM connectomics. A few studies have associated ring neurons with the regulation of sleep homeostasis and structure.

View Article and Find Full Text PDF

Survival for vertebrate animals is dependent on the ability to successfully find food, locate a mate, and avoid predation. Each of these behaviors requires motor control, which is set by a combination of kinematic properties. For example, the frequency and amplitude of motor output combine in a multiplicative manner to determine features of locomotion such as distance traveled, speed, force (thrust), and vigor.

View Article and Find Full Text PDF

Maladaptive operant conditioning contributes to development of neuropsychiatric disorders. Candidate genes have been identified that contribute to this maladaptive plasticity, but the neural basis of operant conditioning in genetic model organisms remains poorly understood. The fruit fly is a versatile genetic model organism that readily forms operant associations with punishment stimuli.

View Article and Find Full Text PDF

Sleep pressure and sleep depth are key regulators of wake and sleep. Current methods of measuring these parameters in have low temporal resolution and/or require disrupting sleep. Here we report analysis tools for high-resolution, noninvasive measurement of sleep pressure and depth from movement data.

View Article and Find Full Text PDF

Both the structure and the amount of sleep are important for brain function. Entry into deep, restorative stages of sleep is time dependent; short sleep bouts selectively eliminate these states. Fragmentation-induced cognitive dysfunction is a feature of many common human sleep pathologies.

View Article and Find Full Text PDF

Serotonin (5HT) is a modulator of many vital processes in the spinal cord (SC), such as production of locomotion. In the larval zebrafish, intraspinal serotonergic neurons (ISNs) are a source of spinal 5HT that, despite the availability of numerous genetic and optical tools, has not yet been directly shown to affect the spinal locomotor network. In order to better understand the functions of ISNs, we used a combination of strategies to investigate ISN development, morphology, and function.

View Article and Find Full Text PDF

Drosophila ether-à-go-go ( eag) is the founding member of a large family of voltage-gated K channels, the KCNH family, which includes Kv10, 11, and 12. Concurrent binding of calcium/calmodulin (Ca/CaM) to NH- and COOH-terminal sites inhibits mammalian EAG1 channels at submicromolar Ca concentrations, likely by causing pore constriction. Although the Drosophila EAG channel was believed to be Ca-insensitive (Schönherr R, Löber K, Heinemann SH.

View Article and Find Full Text PDF

Zebrafish intraspinal serotonergic neuron (ISN) morphology and distribution have been examined in detail at different ages; however, some aspects of the development of these cells remain unclear. Although antibodies to serotonin (5-HT) have detected ISNs in the ventral spinal cord of embryos, larvae, and adults, the only tryptophan hydroxylase (tph) transcript that has been described in the spinal cord is tph1a. Paradoxically, spinal tph1a is only expressed transiently in embryos, which brings the source of 5-HT in the ISNs of larvae and adults into question.

View Article and Find Full Text PDF

The cellular and network basis for most vertebrate locomotor central pattern generators (CPGs) is incompletely characterized, but organizational models based on known CPG architectures have been proposed. Segmental models propose that each spinal segment contains a circuit that controls local coordination and sends longer projections to coordinate activity between segments. Unsegmented/continuous models propose that patterned motor output is driven by gradients of neurons and synapses that do not have segmental boundaries.

View Article and Find Full Text PDF

Despite the diverse methods vertebrates use for locomotion, there is evidence that components of the locomotor central pattern generator (CPG) are conserved across species. When zebrafish begin swimming early in development, they perform short episodes of activity separated by periods of inactivity. Within these episodes, the trunk flexes with side-to-side alternation and the traveling body wave progresses rostrocaudally.

View Article and Find Full Text PDF
Article Synopsis
  • The study aims to understand how diabetic neuropathy progresses by examining nerve fiber density and other clinical measures in participants over 52 weeks.
  • Participants were divided into two groups: those who experienced significant nerve fiber loss (progressing neuropathy) and those who did not (nonprogressing neuropathy), with careful matching based on baseline characteristics.
  • Results showed that only the progressing group had a notable decrease in nerve fiber density, and elevated triglyceride levels were linked to nerve fiber loss, suggesting that high fat levels may play a role in worsening diabetic neuropathy.*
View Article and Find Full Text PDF

Diabetic neuropathy (DN) is a common complication of diabetes. Currently, there is no drug treatment to prevent or slow the development of DN. Rosiglitazone (Rosi) is a potent insulin sensitizer and may also slow the development of DN by a mechanism independent of its effect on hyperglycemia.

View Article and Find Full Text PDF

Diabetic neuropathy (DN) is a debilitating complication of type 1 and type 2 diabetes. Rodent models of DN do not fully replicate the pathology observed in human patients. We examined DN in streptozotocin (STZ)-induced [B6] and spontaneous type 1 diabetes [B6Ins2(Akita)] and spontaneous type 2 diabetes [B6-db/db, BKS-db/db].

View Article and Find Full Text PDF