The brain is a metabolically vulnerable organ as neurons have both high resting metabolic rates and the need for local rapid conversion of carbon sources to ATP during activity. Midbrain dopamine neurons are thought to be particularly vulnerable to metabolic perturbations, as a subset of these are the first to undergo degeneration in Parkinson's disease (PD), a neurodegenerative disorder long suspected to be in part driven by deficits in mid-brain bioenergetics (1). In skeletal muscle, energy homeostasis under varying demands is achieved in part by its ability to rely on glycogen as a fuel store, whose conversion to ATP is under hormonal regulatory control.
View Article and Find Full Text PDFThe brain is a disproportionately large consumer of fuel, estimated to expend ∼20% of the whole-body energy budget, and therefore it is critical to adequately control brain fuel expenditures while satisfying its on-demand needs for continued function. The brain is also metabolically vulnerable as the inability to adequately fuel cellular processes that support information transfer between cells leads to rapid neurological impairment. We show here that a genetic driver of early onset epileptic encephalopathy (EOEE), SLC13A5, a Na /citrate cotransporter (NaCT), is critical for gating the activation of local presynaptic glycolysis.
View Article and Find Full Text PDFProper fuelling of the brain is critical to sustain cognitive function, but the role of fatty acid (FA) combustion in this process has been elusive. Here we show that acute block of a neuron-specific triglyceride lipase, DDHD2 (a genetic driver of complex hereditary spastic paraplegia), or of the mitochondrial lipid transporter CPT1 leads to rapid onset of torpor in adult male mice. These data indicate that in vivo neurons are probably constantly fluxing FAs derived from lipid droplets (LDs) through β-oxidation to support neuronal bioenergetics.
View Article and Find Full Text PDFNeuronal dendrites must relay synaptic inputs over long distances, but the mechanisms by which activity-evoked intracellular signals propagate over macroscopic distances remain unclear. Here, we discovered a system of periodically arranged endoplasmic reticulum-plasma membrane (ER-PM) junctions tiling the plasma membrane of dendrites at ∼1 μm intervals, interlinked by a meshwork of ER tubules patterned in a ladder-like array. Populated with Junctophilin-linked plasma membrane voltage-gated Ca channels and ER Ca-release channels (ryanodine receptors), ER-PM junctions are hubs for ER-PM crosstalk, fine-tuning of Ca homeostasis, and local activation of the Ca/calmodulin-dependent protein kinase II.
View Article and Find Full Text PDFThe ketogenic diet is an effective treatment for drug-resistant epilepsy, but the therapeutic mechanisms are poorly understood. Although ketones are able to fuel the brain, it is not known whether ketones are directly metabolized by neurons on a time scale sufficiently rapid to fuel the bioenergetic demands of sustained synaptic transmission. Here, we show that nerve terminals can use the ketone β-hydroxybutyrate in a cell- autonomous fashion to support neurotransmission in both excitatory and inhibitory nerve terminals and that this flexibility relies on Ca dependent upregulation of mitochondrial metabolism.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2024
We developed a significantly improved genetically encoded quantitative adenosine triphosphate (ATP) sensor to provide real-time dynamics of ATP levels in subcellular compartments. iATPSnFR2 is a variant of iATPSnFR1, a previously developed sensor that has circularly permuted superfolder green fluorescent protein (GFP) inserted between the ATP-binding helices of the -subunit of a bacterial F-F ATPase. Optimizing the linkers joining the two domains resulted in a ~fivefold to sixfold improvement in the dynamic range compared to the previous-generation sensor, with excellent discrimination against other analytes, and affinity variants varying from 4 µM to 500 µM.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) is an important regulator of in cells and dysregulation of ER calcium homeostasis can lead to numerous pathologies. Understanding how various pharmacological and genetic perturbations of ER homeostasis impacts cellular physiology would likely be facilitated by more quantitative measurements of ER levels that allow easier comparisons across conditions. Here, we developed a ratiometric version of our original ER-GCaMP probe that allows for more quantitative comparisons of the concentration of in the ER across cell types and sub-cellular compartments.
View Article and Find Full Text PDFJ Neurochem
May 2024
Although we have learned much about how the brain fuels its functions over the last decades, there remains much still to discover in an organ that is so complex. This article lays out major gaps in our knowledge of interrelationships between brain metabolism and brain function, including biochemical, cellular, and subcellular aspects of functional metabolism and its imaging in adult brain, as well as during development, aging, and disease. The focus is on unknowns in metabolism of major brain substrates and associated transporters, the roles of insulin and of lipid droplets, the emerging role of metabolism in microglia, mysteries about the major brain cofactor and signaling molecule NAD, as well as unsolved problems underlying brain metabolism in pathologies such as traumatic brain injury, epilepsy, and metabolic downregulation during hibernation.
View Article and Find Full Text PDFRecent advances have expanded the role of lipid droplets (LDs) beyond passive lipid storage, implicating their involvement in various metabolic processes across mammalian tissues. Neuronal LDs, long debated in existence, have been identified in several neural structures, raising questions about their contribution to neurodegenerative disorders. Elucidating the specific chemical makeup of these organelles within neurons is critical for understanding their implication in neural pathologies.
View Article and Find Full Text PDFControl of neurotransmission efficacy is central to theories of how the brain computes and stores information. Presynaptic G-protein coupled receptors (GPCRs) are critical in this problem as they locally influence synaptic strength and can operate on a wide range of time scales. Among the mechanisms by which GPCRs impact neurotransmission is by inhibiting voltage-gated calcium (Ca) influx in the active zone.
View Article and Find Full Text PDFThe brain is a metabolically fragile organ as compromises in fuel availability rapidly degrade cognitive function. Nerve terminals are likely loci of this vulnerability as they do not store sufficient ATP molecules, needing to synthesize them during activity or suffer acute degradation in performance. The ability of on-demand ATP synthesis to satisfy activity-driven ATP hydrolysis will depend additionally on the magnitude of local resting metabolic processes.
View Article and Find Full Text PDFA whole-genome CRISPR/Cas9 screen identified ATP2A2, the gene encoding the Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) 2 protein, as being important for V(D)J recombination. SERCAs are ER transmembrane proteins that pump Ca2+ from the cytosol into the ER lumen to maintain the ER Ca2+ reservoir and regulate cytosolic Ca2+-dependent processes. In preB cells, loss of SERCA2 leads to reduced V(D)J recombination kinetics due to diminished RAG-mediated DNA cleavage.
View Article and Find Full Text PDFA recent paper by Carter et al. identifies a novel organelle, the ribosome-associated vesicle (RAV), that might serve as a portable, local factory for producing proteins destined for the secretory pathway. The appearance of RAVs in dendrites suggests they may serve to generate membrane and secreted proteins in distal processes.
View Article and Find Full Text PDFThe brain is a vulnerable metabolic organ and must adapt to different fuel conditions to sustain function. Nerve terminals are a locus of this vulnerability, but how they regulate ATP synthesis as fuel conditions vary is unknown. We show that synapses can switch from glycolytic to oxidative metabolism, but to do so, they rely on activity-driven presynaptic mitochondrial Ca uptake to accelerate ATP production.
View Article and Find Full Text PDFSynapses are fundamental information-processing units of the brain, and synaptic dysregulation is central to many brain disorders ("synaptopathies"). However, systematic annotation of synaptic genes and ontology of synaptic processes are currently lacking. We established SynGO, an interactive knowledge base that accumulates available research about synapse biology using Gene Ontology (GO) annotations to novel ontology terms: 87 synaptic locations and 179 synaptic processes.
View Article and Find Full Text PDFVolatile anesthetics affect neuronal signaling by poorly understood mechanisms. Activation of central dopaminergic pathways has been implicated in emergence from general anesthesia. The volatile anesthetic isoflurane differentially inhibits glutamatergic and GABAergic synaptic vesicle (SV) exocytosis by reducing presynaptic Ca influx without affecting the Ca-exocytosis relationship, but its effects on dopaminergic exocytosis are unclear.
View Article and Find Full Text PDFExocytosis is a fundamental membrane fusion process by which the soluble or membrane-associated cargoes of a secretory vesicle are delivered to the extracellular milieu or the cell surface. While essential for all organs, the brain relies on a specialized form of exocytosis to mediate information flow throughout its vast circuitry. Neurotransmitter-laden synaptic vesicles fuse with the plasma membrane on cue with astonishing speed in a probabilistic process that is both tightly regulated and capable of a fascinating array of plasticities.
View Article and Find Full Text PDFIn this issue of Neuron, Harris et al. (2018) show that a signal transduction pathway normally exploited by the innate immune system in recognizing foreign agents plays a critical role in controlling a synapse's ability to maintain stability in the efficacy of synaptic transmission over both rapid and prolonged timescales.
View Article and Find Full Text PDFMitochondrial division requires division of both the inner and outer mitochondrial membranes (IMM and OMM, respectively). Interaction with endoplasmic reticulum (ER) promotes OMM division by recruitment of the dynamin Drp1, but effects on IMM division are not well characterized. We previously showed that actin polymerization through ER-bound inverted formin 2 (INF2) stimulates Drp1 recruitment in mammalian cells.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized pathologically by the selective loss of substantia nigra (SN) dopaminergic (DAergic) neurons. Recent evidence has suggested a role of LRRK2, linked to the most frequent familial PD, in regulating synaptic vesicle (SV) trafficking. However, the mechanism whereby LRRK2 mutants contribute to nigral vulnerability remains unclear.
View Article and Find Full Text PDF