Imaging Neurosci (Camb)
July 2024
Age-related alterations in the auditory system have been suggested to affect the processing of temporal envelope amplitude modulations (AM) at different levels of the auditory hierarchy, yet few studies have used functional magnetic resonance imaging (fMRI) to study this noninvasively in humans with high spatial resolution. In this study, we utilized sparse-sampling fMRI at 3 Tesla (3T) to investigate regional blood oxygenation level-dependent (BOLD) responses to AM noise stimuli in 65 individuals ranging in age from 19 to 77 years. We contrasted BOLD responses to AM noise stimuli modulated at 4 Hz or 80 Hz with responses to unmodulated stimuli.
View Article and Find Full Text PDFBrain Struct Funct
May 2025
Despite the impact of tractography on human brain mapping, direct validation and biological interpretation remain challenging. This short communication summarizes the key points of a debate held at the 2024 Tract-Anat Retreat on whether animal models are useful for studying human neuroanatomy with diffusion MRI tractography. While recognizing limitations, such as anatomical and biological differences between species, hardware and acquisition considerations and direct translation and interpretation, we identified immense value and utility of animal models for tractography including validation with histology, acquiring high-resolution datasets, exploring disease mechanisms, and advancing comparative neuroanatomy.
View Article and Find Full Text PDFThe value of preclinical diffusion MRI (dMRI) is substantial. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages including higher SNR and spatial resolution compared to in vivo studies, and enabling more advanced diffusion contrasts for improved microstructure and connectivity characterization.
View Article and Find Full Text PDFWe used diffusion MRI and x-ray synchrotron imaging on monkey and mice brains to examine the organisation of fibre pathways in white matter across anatomical scales. We compared the structure in the corpus callosum and crossing fibre regions and investigated the differences in cuprizone-induced demyelination in mouse brains versus healthy controls. Our findings revealed common principles of fibre organisation that apply despite the varying patterns observed across species; small axonal fasciculi and major bundles formed laminar structures with varying angles, according to the characteristics of major pathways.
View Article and Find Full Text PDFSmall-animal diffusion MRI (dMRI) has been used for methodological development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. The steps from animal setup and monitoring, to acquisition, analysis, and interpretation are complex, with many decisions that may ultimately affect what questions can be answered using the resultant data. This work aims to present selected considerations and recommendations from the diffusion community on best practices for preclinical dMRI of in vivo animals.
View Article and Find Full Text PDFPreclinical diffusion MRI (dMRI) has proven value in methods development and validation, characterizing the biological basis of diffusion phenomena, and comparative anatomy. While dMRI enables in vivo non-invasive characterization of tissue, ex vivo dMRI is increasingly being used to probe tissue microstructure and brain connectivity. Ex vivo dMRI has several experimental advantages that facilitate high spatial resolution and high SNR images, cutting-edge diffusion contrasts, and direct comparison with histological data as a methodological validation.
View Article and Find Full Text PDFBrain white matter is a dynamic environment that continuously adapts and reorganizes in response to stimuli and pathological changes. Glial cells, especially, play a key role in tissue repair, inflammation modulation, and neural recovery. The movements of glial cells and changes in their concentrations can influence the surrounding axon morphology.
View Article and Find Full Text PDFPurpose: This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T-based pore size estimation technique.
Theory And Methods: A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases.
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) and light-sheet fluorescence microscopy (LSFM) are technologies that enable non-disruptive 3-dimensional imaging of whole mouse brains. A combination of complementary information from both modalities is desirable for studying neuroscience in general, disease progression and drug efficacy. Although both technologies rely on atlas mapping for quantitative analyses, the translation of LSFM recorded data to MRI templates has been complicated by the morphological changes inflicted by tissue clearing and the enormous size of the raw data sets.
View Article and Find Full Text PDFSynchrotron X-ray computed tomography (SXCT) allows 3D imaging of tissue with a very large field of view and an excellent micron resolution and enables the investigation of muscle fiber atrophy in 3D. The study aimed to explore the 3D micro-architecture of healthy skeletal muscle fibers and muscle fibers at different stages of atrophy (stroke sample = muscle atrophy; spinal cord injury (SCI) sample = severe muscle atrophy). Three muscle samples: a healthy control sample; a stroke sample (atrophic sample), and an SCI sample (severe atrophic sample) were imaged using SXCT, and muscle fiber populations were segmented and quantified for microarchitecture and morphology differences.
View Article and Find Full Text PDFEfficient interhemispheric integration of neural activity between left and right primary motor cortex (M1) is critical for inter-limb motor control. We employed optogenetic stimulation to establish a framework for probing transcallosal M1-M1 interactions in rats. We performed optogenetic stimulation of excitatory neurons in right M1 of male Sprague-Dawley rats.
View Article and Find Full Text PDFFront Neurosci
March 2022
Modern diffusion and functional magnetic resonance imaging (dMRI/fMRI) provide non-invasive high-resolution images from which multi-layered networks of whole-brain structural and functional connectivity can be derived. Unfortunately, the lack of observed correspondence between the connectivity profiles of the two modalities challenges the understanding of the relationship between the functional and structural connectome. Rather than focusing on correspondence at the level of connections we presently investigate correspondence in terms of modular organization according to shared canonical processing units.
View Article and Find Full Text PDFIn magnetic resonance imaging, the application of a strong diffusion weighting suppresses the signal contributions from the less diffusion-restricted constituents of the brain's white matter, thus enabling the estimation of the transverse relaxation time T that arises from the more diffusion-restricted constituents such as the axons. However, the presence of cell nuclei and vacuoles can confound the estimation of the axonal T, as diffusion within those structures is also restricted, causing the corresponding signal to survive the strong diffusion weighting. We devise an estimator of the axonal T based on the directional spherical variance of the strongly diffusion-weighted signal.
View Article and Find Full Text PDFNoninvasive estimation of axon diameter with diffusion MRI holds the potential to investigate the dynamic properties of the brain network and pathology of neurodegenerative diseases. Recent studies use powder averaging to account for complex white matter architectures, but these have not been validated for real axonal geometries from regions that contain fibre crossings. Here, we present 120-304μm long segmented axons from X-ray nano-holotomography volumes of a splenium and crossing fibre region of a vervet monkey brain.
View Article and Find Full Text PDFBackground: Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease leading to damage of white matter (WM) and grey matter (GM). Magnetic resonance imaging (MRI) is the modality of choice to assess brain damage in MS, but there is an unmet need in MRI for achieving higher sensitivity and specificity to MS-related microstructural alterations in WM and GM.
Objective: To explore whether tensor-valued diffusion MRI (dMRI) can yield sensitive microstructural read-outs for focal demyelination in cerebral WM and deep GM (DGM).
The organization of the human brain remains elusive, yet is of great importance to the mechanisms of integrative brain function. At the macroscale, its structural and functional interpretation is conventionally assessed at the level of cortical units. However, the definition and validation of such cortical parcellations are problematic due to the absence of a true gold standard.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disease that is typically diagnosed late in its progression. There is a need for biomarkers suitable for monitoring the disease progression at earlier stages to guide the development of novel neuroprotective therapies. One potential biomarker, α-synuclein, has been found in both the familial cases of PD, as well as the sporadic cases and is considered a key feature of PD.
View Article and Find Full Text PDFAxonal conduction velocity, which ensures efficient function of the brain network, is related to axon diameter. Noninvasive, in vivo axon diameter estimates can be made with diffusion magnetic resonance imaging, but the technique requires three-dimensional (3D) validation. Here, high-resolution, 3D synchrotron X-ray nano-holotomography images of white matter samples from the corpus callosum of a monkey brain reveal that blood vessels, cells, and vacuoles affect axonal diameter and trajectory.
View Article and Find Full Text PDFIn recent years, the combination of whole-brain immunolabelling, light sheet fluorescence microscopy (LSFM) and subsequent registration of data with a common reference atlas, has enabled 3D visualization and quantification of fluorescent markers or tracers in the adult mouse brain. Today, the common coordinate framework version 3 developed by the Allen's Institute of Brain Science (AIBS CCFv3), is widely used as the standard brain atlas for registration of LSFM data. However, the AIBS CCFv3 is based on histological processing and imaging modalities different from those used for LSFM imaging and consequently, the data differ in both tissue contrast and morphology.
View Article and Find Full Text PDFDiffuse traumatic axonal injury (TAI) is one of the key mechanisms leading to impaired consciousness after severe traumatic brain injury (TBI). In addition, preferential regional expression of TAI in the brain may also influence clinical outcome. We addressed the question whether the regional expression of microstructural changes as revealed by whole-brain diffusion tensor imaging (DTI) in the subacute stage after severe TBI may predict the duration of post-traumatic amnesia (PTA).
View Article and Find Full Text PDFMultiple sclerosis leads to diffuse damage of the central nervous system, affecting also the normal-appearing white matter. Demyelination and axonal degeneration reduce regional fractional anisotropy in normal-appearing white matter, which can be routinely mapped with diffusion tensor imaging. However, the standard fractional anisotropy metric is also sensitive to physiological variations in orientation dispersion of white matter fibres.
View Article and Find Full Text PDF: Motor skill learning already triggers the functional reorganization of regional brain activity after short periods of training. Recent studies suggest that microstructural change may emerge at similar timescales, but the spatiotemporal profiles of functional and structural plasticity have rarely been traced in parallel. Recently, we demonstrated that 5 days of endoscopic skill training induces changes in task-related brain activity in the ventral premotor cortex (PMv) and other areas of the frontoparietal grasping network.
View Article and Find Full Text PDF