Background: Peatlands are globally-important carbon sinks at risk of degradation from climate change and direct human impacts, including drainage and burning. Peat accumulates when there is a positive mass balance between plant productivity inputs and litter/peat decomposition losses. However, the factors influencing the rate of peat accumulation over time are still poorly understood.
View Article and Find Full Text PDFHigh-latitude peatlands are changing rapidly in response to climate change, including permafrost thaw. Here, we reconstruct hydrological conditions since the seventeenth century using testate amoeba data from 103 high-latitude peat archives. We show that 54% of the peatlands have been drying and 32% have been wetting over this period, illustrating the complex ecohydrological dynamics of high latitude peatlands and their highly uncertain responses to a warming climate.
View Article and Find Full Text PDFTestate amoebae are a widely-used tool for palaeohydrological reconstruction from peatlands. However, it has been observed that weak idiosomic siliceous tests (WISTs) are common in uppermost peats, but very rarely found as subfossils deeper in the peat profile. This taphonomic problem has been noted widely and it has been established that WISTs disaggregate and/or dissolve in the low pH condition of ombrotrophic peatlands.
View Article and Find Full Text PDF