Publications by authors named "Thanh-Nhan Nguyen-Pham"

Dendritic cells (DC)-based vaccines are considered useful in cancer immuno-therapy, and the interactions of DC and dying tumor cells are important and promising for cancer immunotherapy. We investigated whether chaetocin could be used to induce death of myeloma cells, for loading onto DCs can affect DCs function. In this study, we show that the dying myeloma cells treated with chaetocin resulted in the induction of heat shock protein (HSP) 90, which was inhibited by antioxidant N-acetyl cysteine, and showed an increase in the expression of MAGE-A3 and MAGE-C1/CT7.

View Article and Find Full Text PDF

In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20.

View Article and Find Full Text PDF

Lenalidomide (LEN) has been used as an immunomodulatory drug with direct and indirect anti-tumor effects. In this study, we evaluated the effect of LEN on the differentiation, maturation, and function of dendritic cells (DCs) in patients with multiple myeloma in vitro. Various doses of LEN were added after the monocytes had differentiated into immature DCs and were activated into mature DCs.

View Article and Find Full Text PDF

We investigated the efficacy of lenalidomide (LEN) in combination with dendritic cell (DC) vaccination in the MOPC-315 murine myeloma model. After tumor growth, LEN was injected intraperitoneally for 4 consecutive days in combination with DC vaccination. The combination of LEN and vaccination efficiently inhibited tumor growth compared with the single agents alone.

View Article and Find Full Text PDF

Nanoparticles in the field of dendritic cell (DC) research are emerging as a promising method of enhancing the efficacy of cancer immunotherapy. We investigated the effect of branched polyethylenimine-superparamagnetic iron oxide nanoparticles (bPEI-SPIONs) on tumor cells loaded onto DCs. The tumor antigens were prepared as follows: (1) apoptotic U266 cells with ultraviolet B (UVB) irradiation followed by a 2 h incubation in the absence (2 h postirradiated cells) or (2) presence of bPEI-SPIONs (bPEI-SPION 2 h postirradiated cells) and (3) apoptotic U266 cells with UVB irradiation followed by an overnight 16 h incubation (16 h postirradiated cells).

View Article and Find Full Text PDF

Although the introduction of stem cell transplantation and novel agents has improved survival, multiple myeloma (MM) is still difficult to cure. Alternative approaches are clearly needed to prolong the survival of patients with MM. Dendritic cell (DC) therapy is a very promising tool immunologically in MM.

View Article and Find Full Text PDF

Signal transducer and activator of transcription 3 (STAT3) is highly activated in multiple myeloma. Activated STAT3 promotes survival and proliferation of cancer cells, suppresses Th1 immune response, and induces dysfunction of immune cells. We investigated whether pretreating myeloma cells with a phosphor (p)-STAT3 inhibitor (JSI-124) and/or bortezomib before loading into dendritic cells (DCs) can affect DC function.

View Article and Find Full Text PDF

SUV39H1 is a histone 3 lysine 9 (H3K9)-specific methyltransferase that is important for heterochromatin formation and the regulation of gene expression. Chaetocin specifically inhibits SUV39H1, resulted in H3K9 methylation reduction as well as reactivation of silenced genes in cancer cells. Histone deacetylase (HDAC) inhibitors inhibit deacetylases and accumulate high levels of acetylation lead to cell cycle arrest and apoptosis.

View Article and Find Full Text PDF

Multiple myeloma (MM) is a good target disease in which one can apply cellular immunotherapy, which is based on the graft-versus-myeloma effect. This role of immune effector cells provides the framework for the development of immune-based therapeutic options that use antigen-presenting cells (APCs) with increased potency, such as dendritic cells (DCs), in MM. Current isolated idiotype (Id), myeloma cell lysates, myeloma dying cells, DC-myeloma hybrids, or DC transfected with tumor-derived RNA has been used for immunotherapy with DCs.

View Article and Find Full Text PDF

Cellular therapy with dendritic cells (DCs) is emerging as a useful immunotherapeutic tool to treat multiple myeloma (MM). DC-based idiotype vaccination was recently suggested to induce idiotype-specific immune responses in MM patients. However, the clinical results so far have been largely disappointing, and the clinical effectiveness of such vaccinations in MM still needs to be demonstrated.

View Article and Find Full Text PDF

Anterior gradient-2 (AGR2) promotes tumor growth, cell migration and cellular transformation and its enhanced expression is almost completely restricted to malignant tissues, thus making AGR2 an interesting target for the development of immunotherapeutic strategies. We investigated whether the AGR2 molecule comprises human leukocyte antigen (HLA)-A*0201-binding epitopes recognized by human cytotoxic T lymphocytes (CTLs), which could be targeted in dendritic cell (DC)-based cancer immunotherapy against colorectal cancer (CRC). We reviewed the sequence of AGR2 for peptides that could potentially bind to HLA-A*0201 with the aid of a computer-based program.

View Article and Find Full Text PDF

Anterior gradient-2 (AGR2) promotes tumor growth, cell migration, and cellular transformation, and is one of the specific mRNA markers for circulating tumor cells in patients with gastrointestinal cancer. We investigated the feasibility of AGR2 as a potent antigen for tumor immunotherapy against colorectal cancer (CRC) cells using dendritic cells (DCs) transduced with a recombinant adenovirus harboring the AGR2 gene (AdAGR2). DCs transduced with a recombinant adenovirus encoding the AGR2 gene (AdAGR2/DCs) were characterized.

View Article and Find Full Text PDF

Dendritic cell (DC)-based vaccines continue to be considered an attractive tool for cancer immunotherapy. DCs require an additional signal from the environment or other immune cells to polarize the development of immune responses toward T helper 1 (Th1) or Th2 responses. DCs play a role in natural killer (NK) cell activation, and NK cells are also able to activate and induce the maturation of DCs.

View Article and Find Full Text PDF

The interaction between dendritic cells (DCs) and natural killer (NK) cells plays a key role in inducing DC maturation for subsequent T-cell priming. We investigated to generate potent DCs by stimulated with NK cells to induce myeloma-specific cytotoxic T lymphocytes (CTLs). NK cells-stimulated-DCs exhibited high expression of costimulatory molecules and high production of IL-12p70.

View Article and Find Full Text PDF

Uncarinic acid C (URC) is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cells (DC) is critical for the induction of Ag-specific T lymphocyte responses and may be essential for the development of human vaccines relying on T cell immunity. DC might be a potential target for URC.

View Article and Find Full Text PDF

For wide application of a dendritic cell (DC) vaccination in myeloma patients, easily available tumor antigens should be developed. We investigated the feasibility of cellular immunotherapy using autologous alpha-type 1-polarized dendritic cells (αDC1s) loaded with apoptotic allogeneic myeloma cells, which could generate myeloma-specific cytotoxic T lymphocytes (CTLs) against autologous myeloma cells in myeloma patients. Monocyte-derived DCs were matured by adding the αDC1-polarizing cocktail (TNFα/IL-1β/IFN-α/IFN-γ/poly-I:C) and loaded with apoptotic allogeneic CD138(+) myeloma cells from other patients with matched monoclonal immunoglobulins as a tumor antigen.

View Article and Find Full Text PDF

The major limitation for the maturation of dendritic cells (DCs) using Toll-like receptor (TLR) agonists is their decreased ability to migrate into lymph nodes compared with conventional DCs. CD38 can be used as a multifunctional marker to modulate migration, survival and Th1 responses of DCs. CD74 has been shown to negatively regulate DC migration.

View Article and Find Full Text PDF

Ursolic acid is triterpene isolated from Uncaria rhynchophylla and is a pharmacologically active substance. The induction of dendritic cell maturation is critical for the induction of Ag-specific T-lymphocyte response and may be essential for the development of human vaccine relying on T cell immunity. In this study, we investigated that the effect of Ursolic acid on the phenotypic and functional maturation of human monocyte-derived dendritic cells in vitro.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a role in natural killer (NK) cell activation, while NK cells are also able to activate and mature DCs. Toll-like receptors (TLRs) on the surface of DCs and NK cells induce the maturation and activation of these cells when engaged with their cognate ligand. We investigated to generate potent DCs by maturation with NK cells in the presence of TLR agonist in vitro and tested the efficacy of these DC vaccinations in mouse colon cancer model.

View Article and Find Full Text PDF

To induce a potent cytotoxic T lymphocyte (CTL) response, various tumor antigens should be loaded onto dendritic cells (DCs). In multiple myeloma (MM), it is difficult to obtain a sufficient number of autologous tumor cells as a source of tumor antigens in the clinical setting. We investigated the feasibility of immunotherapy in patients with MM, using myeloma-specific CTLs generated in vitro by alpha-type 1-polarized DCs (alphaDC1s) loaded with the ultraviolet B-irradiated allogeneic myeloma cell line, ARH77.

View Article and Find Full Text PDF

All-trans retinoic acid (ATRA) affects on the function of antigen presenting cells with somewhat controversies. We investigated the effects of ATRA on differentiation, maturation and function of human monocyte-derived dendritic cells (DCs). Low dose (10(-14)M) or high dose (10(-6)M) of ATRA was added either when monocytes were differentiated into immature DCs (imDCs) or mature DCs (mDCs) were induced.

View Article and Find Full Text PDF

We investigated to establish CD40-activated B cells (CD40-B cells) as alternative antigen-presenting cells (APCs) for the induction of myeloma-specific cytotoxic T lymphocytes (CTLs). To generate CD40-B cells, peripheral blood mononuclear cells were co-cultured with CD40L-transfected J558 cells in the presence of IL-4, insulin, transferrin, and cyclosporine for 14 days, and pulsed with myeloma lysates. The CD40-B cells consistently expressed high levels of CD80, CD86, CD54, CCR7, and HLA-DR.

View Article and Find Full Text PDF

Purpose: Calcium ionophore (CI) is used to generate dendritic cells (DCs) from progenitor cells, monocytes, or leukemic cells. The aim of this study was to determine the optimal dose of CI and the appropriate length of cell culture required for acute myeloid leukemia (AML) cells and to evaluate the limitations associated with CI.

Materials And Methods: To generate leukemic DCs, leukemic cells (4x10(6) cells) from six AML patients were cultured with various concentrations of CI and/or IL-4 for 1, 2 or 3 days.

View Article and Find Full Text PDF

We investigated the possibility of immunotherapy for multiple myeloma (MM) using myeloma-specific cytotoxic T lymphocytes (CTLs) that were stimulated in vitro by dendritic cells (DCs) pulsing with purified and optimized myeloma lysates. CD14(+) cells were cultured in the presence of GM-CSF and IL-4. On day 6, the immature DCs were pulsed with the purified myeloma cell lysates, and then maturation of the DCs was induced by the addition of a cytokine cocktail.

View Article and Find Full Text PDF