Publications by authors named "Thanh-An Truong"

Flexible endoscopes equipped with multimodal sensors offer an innovative minimally invasive approach to perioperative diagnosis and intraoperative ablation monitoring, addressing the limitations of conventional mechanical- and optical-based techniques. Over the years, various miniaturized sensors have been developed, providing essential insights through minimally invasive surgeries (MIS). Among them, tactile sensors hold significant potential to revolutionize the diagnosis of tissue malignancy, serving to detect differences in the mechanical properties between healthy and cancerous tissues.

View Article and Find Full Text PDF

Body sounds serve as a valuable source of health information, offering insights into systems such as the cardiovascular, pulmonary, and gastrointestinal systems. Additionally, body sound measurements are easily accessible, fast, and non-invasive, which has led to their widespread use in clinical auscultation for diagnosing health conditions. However, conventional devices like stethoscopes are constrained by rigid and bulky designs, limiting their potential for long-term monitoring and often leading to subjective diagnoses.

View Article and Find Full Text PDF

Implantable systems with chronic stability, high sensing performance, and extensive spatial-temporal resolution are a growing focus for monitoring and treating several diseases such as epilepsy, Parkinson's disease, chronic pain, and cardiac arrhythmias. These systems demand exceptional bendability, scalable size, durable electrode materials, and well-encapsulated metal interconnects. However, existing chronic implantable bioelectronic systems largely rely on materials prone to corrosion in biofluids, such as silicon nanomembranes or metals.

View Article and Find Full Text PDF

Flexible robotic systems (FRSs) and wearable user interfaces (WUIs) have been widely used in medical fields, offering lower infection risk and shorter recovery, and supporting amiable human-machine interactions (HMIs). Recently, soft electric, thermal, magnetic, and fluidic actuators with enhanced safety and compliance have innovatively boosted the use of FRSs and WUIs across many sectors. Among them, soft hydraulic actuators offer great speed, low noise, and high force density.

View Article and Find Full Text PDF

Flexible and implantable electronics hold tremendous promises for advanced healthcare applications, especially for physiological neural recording and modulations. Key requirements in neural interfaces include miniature dimensions for spatial physiological mapping and low impedance for recognizing small biopotential signals. Herein, a bottom-up mesoporous formation technique and a top-down microlithography process are integrated to create flexible and low-impedance mesoporous gold (Au) electrodes for biosensing and bioimplant applications.

View Article and Find Full Text PDF

This study reports the ability of zinc borate (ZB) and nano silica (NS) in improving mechanical properties and thermal behavior of nanocomposites and coatings composed of epoxy resin EPIKOTE 1001 × 75 cured with hardener T31. The properties of the fabricated nanocomposites were characterized using scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, derivative thermogravimetry, differential scanning calorimetry, and dynamic mechanical analysis. With the addition content of 5 wt % ZB into epoxy resin (EPIKOTE 1001 × 75/T31/ZB-5), the impact strength of the fabricated epoxy polymer film increased by 50%, and the glass transition temperature ( ) increased from 52 to 71 °C.

View Article and Find Full Text PDF

Electrical neuron stimulation holds promise for treating chronic neurological disorders, including spinal cord injury, epilepsy, and Parkinson's disease. The implementation of ultrathin, flexible electrodes that can offer noninvasive attachment to soft neural tissues is a breakthrough for timely, continuous, programable, and spatial stimulations. With strict flexibility requirements in neural implanted stimulations, the use of conventional thick and bulky packages is no longer applicable, posing major technical issues such as short device lifetime and long-term stability.

View Article and Find Full Text PDF

The integration of micro- and nanoelectronics into or onto biomedical devices can facilitate advanced diagnostics and treatments of digestive disorders, cardiovascular diseases, and cancers. Recent developments in gastrointestinal endoscopy and balloon catheter technologies introduce promising paths for minimally invasive surgeries to treat these diseases. However, current therapeutic endoscopy systems fail to meet requirements in multifunctionality, biocompatibility, and safety, particularly when integrated with bioelectronic devices.

View Article and Find Full Text PDF

Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids.

View Article and Find Full Text PDF

Rib fracture is a common injury and can result in pain during respiration. Conservative treatment of rib fracture is applied via mechanical ventilation. However, ventilator-associated complications frequently occur.

View Article and Find Full Text PDF