Publications by authors named "Phuoc Thien Phan"

Endoscopic submucosal dissection (ESD) has emerged as a critical alternative to laparoscopic excisional surgery for the removal of early gastrointestinal tumors. However, current robotic systems for ESD face challenges with accessibility, dexterity, and precision in confined spaces due to limitations in actuation methods and mechanical design. To overcome these issues, a new motorless, master-slave soft robotic system using hydraulic actuation is introduced for ESD procedures.

View Article and Find Full Text PDF

Heart disease encompasses a range of conditions that affect the heart, including coronary artery disease, arrhythmias, congenital heart defects, heart valve disease, and conditions that affect the heart muscle. Intervention strategies can be categorized according to when they are administered and include: 1) Monitoring cardiac function using sensor technology to inform diagnosis and treatment, 2) Managing symptoms by restoring cardiac output, electrophysiology, and hemodynamics, and often serving as bridge-to-recovery or bridge-to-transplantation strategies, and 3) Repairing damaged tissue, including myocardium and heart valves, when management strategies are insufficient. Each intervention approach and technology require specific material properties to function optimally, relying on materials that support their action and interface with the body, with new technologies increasingly depending on advances in materials science and engineering.

View Article and Find Full Text PDF

Recent advancements in teleoperated surgical robotic systems (TSRSs) for minimally invasive surgery (MIS) have significantly improved diagnostic and surgical outcomes. However, as the complexity of MIS procedures continues to grow, there is an increasing need to enhance surgical tools by integrating advanced functionalities into these instruments for superior medical results. Despite recent advancements, TSRSs face significant challenges, including rigidity, suboptimal actuation methods, large sizes, and complex control mechanisms.

View Article and Find Full Text PDF

Hemodynamic stabilization is crucial in managing acute cardiac events, where compromised blood flow can lead to severe complications and increased mortality. Conditions like decompensated heart failure (HF) and cardiogenic shock require rapid and effective hemodynamic support. Current mechanical assistive devices, such as intra-aortic balloon pumps (IABP) and extracorporeal membrane oxygenation (ECMO), offer temporary stabilization but are limited to short-term use due to risks associated with prolonged blood contact.

View Article and Find Full Text PDF

The heart's intricate myocardial architecture has been called the Gordian knot of anatomy, an impossible tangle of intricate muscle fibers. This complexity dictates equally complex cardiac motions that are difficult to mimic in physical systems. If these motions could be generated by a robotic system, then cardiac device testing, cardiovascular disease studies, and surgical procedure training could reduce their reliance on animal models, saving time, costs, and lives.

View Article and Find Full Text PDF

Flexible robotic systems (FRSs) and wearable user interfaces (WUIs) have been widely used in medical fields, offering lower infection risk and shorter recovery, and supporting amiable human-machine interactions (HMIs). Recently, soft electric, thermal, magnetic, and fluidic actuators with enhanced safety and compliance have innovatively boosted the use of FRSs and WUIs across many sectors. Among them, soft hydraulic actuators offer great speed, low noise, and high force density.

View Article and Find Full Text PDF

Work-related musculoskeletal disorders (WMSDs) are often caused by repetitive lifting, making them a significant concern in occupational health. Although wearable assist devices have become the norm for mitigating the risk of back pain, most spinal assist devices still possess a partially rigid structure that impacts the user's comfort and flexibility. This paper addresses this issue by presenting a smart textile-actuated spine assistance robotic exosuit (SARE), which can conform to the back seamlessly without impeding the user's movement and is incredibly lightweight.

View Article and Find Full Text PDF

The advent of soft robots has solved many issues posed by their rigid counterparts, including safer interactions with humans and the capability to work in narrow and complex environments. While much work has been devoted to developing soft actuators and bioinspired mechatronic systems, comparatively little has been done to improve the methods of actuation. Hydraulically soft actuators (HSAs) are emerging candidates to control soft robots due to their fast responses, low noise, and low hysteresis compared to compressible pneumatic ones.

View Article and Find Full Text PDF

Three-dimensional (3D) bioprinting technology offers great potential in the treatment of tissue and organ damage. Conventional approaches generally rely on a large form factor desktop bioprinter to create in vitro 3D living constructs before introducing them into the patient's body, which poses several drawbacks such as surface mismatches, structure damage, and high contamination along with tissue injury due to transport and large open-field surgery. In situ bioprinting inside a living body is a potentially transformational solution as the body serves as an excellent bioreactor.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses the development of smart textiles that integrate textiles with artificial muscles, which provide benefits like comfort and active motion.
  • It introduces new programmable smart textiles created through knitting and weaving techniques, supported by mathematical models that describe their behavior under force.
  • Various prototypes are tested, demonstrating significant shape-changing capabilities, and the smart textiles have potential applications in wearable devices, robotics, and electronics.
View Article and Find Full Text PDF

Soft actuators (SAs) have been used in many compliant robotic structure and wearable devices, due to their safe interaction with the wearers. Despite advances, the capability of current SAs is limited by scalability, high hysteresis, and slow responses. In this paper, a new class of soft, scalable, and high-aspect ratio fiber-reinforced hydraulic SAs is introduced.

View Article and Find Full Text PDF

Wound closure with surgical sutures is a critical challenge for flexible endoscopic surgeries. Substantial efforts have been introduced to develop functional and smart surgical sutures to either monitor wound conditions or ease the complexity of knot tying. Although research interests in smart sutures by soft robotic technologies have emerged for years, it is challenging to develop a soft robotic structure that possesses a similar physical structure as conventional sutures while offering a self-tightening knot or anchor to close the wound.

View Article and Find Full Text PDF

Research on soft artificial muscles (SAMs) is rapidly growing, both in developing new actuation ideas and improving existing structures with multifunctionality. The human body has more than 600 muscles that drive organs and joints to achieve desired functions. Inspired by the human muscles, this article presents a new type of SAM fiber formed from twisting and braiding soft hydraulic filament artificial muscles with high aspect ratio, high strain, and high energy efficiency.

View Article and Find Full Text PDF

This paper presents a two magnetic sensor based tracking method for a magnetically inflated intragastric balloon capsule (MIBC) which is used for obesity treatment. After the MIBC is swallowed, it is designed to be inflated inside the stomach by approaching a permanent magnet (PM) externally near the abdomen. However, if the balloon inflation is accidentally triggered while the MIBC is still in the esophagus, the esophagus will be damaged.

View Article and Find Full Text PDF

Intragastric balloons (IGBs), by occupying the stomach space and prolonging satiety, is a promising method to treat obesity and consequently improves its associated comorbidities, e.g. coronary heart disease, diabetes, and cancer.

View Article and Find Full Text PDF

In flexible endoscopy, the endoscope needs to be sufficiently flexible to go through the tortuous paths inside the human body and meanwhile be stiff enough to withstand external payloads without unwanted tip bending during operation. Thus, an endoscope whose stiffness can be adjusted on command is needed. This paper presents a novel variable-stiffness manipulator.

View Article and Find Full Text PDF

Haptic feedback for flexible endoscopic surgical robots is challenging due to space constraints for sensors and shape-dependent force hysteresis of tendon-sheath mechanisms (TSMs). This paper proposes (1) a single-axis fiber Bragg grating (FBG)-based force sensor for a TSM of a robotic arm and (2) an integrated sensor-model approach to estimate forces on other TSMs of that arm. With a robust and simple structure, a temperature-compensated sensor can be mounted on the distal sheath to measure forces applied by the TSM.

View Article and Find Full Text PDF