Publications by authors named "Taka A Tsunoyama"

This review examines the dynamic mechanisms underlying cellular signaling, communication, and adhesion via transient, nano-scale, liquid-like molecular assemblies on the plasma membrane (PM). Traditional views posit that stable, solid-like molecular complexes perform these functions. However, advanced imaging reveals that many signaling and scaffolding proteins only briefly reside in these molecular complexes and that micron-scale protein assemblies on the PM, including cell adhesion structures and synapses, are likely made of archipelagoes of nanoliquid protein islands.

View Article and Find Full Text PDF

Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity.

View Article and Find Full Text PDF

Using our newly developed ultrafast camera described in the companion paper, we reduced the data acquisition periods required for photoactivation/photoconversion localization microscopy (PALM, using mEos3.2) and direct stochastic reconstruction microscopy (dSTORM, using HMSiR) by a factor of ≈30 compared with standard methods, for much greater view-fields, with localization precisions of 29 and 19 nm, respectively, thus opening up previously inaccessible spatiotemporal scales to cell biology research. Simultaneous two-color PALM-dSTORM and PALM-ultrafast (10 kHz) single fluorescent-molecule imaging-tracking has been realized.

View Article and Find Full Text PDF

The spatial resolution of fluorescence microscopy has recently been greatly enhanced. However, improvements in temporal resolution have been limited, despite their importance for examining living cells. Here, we developed an ultrafast camera system that enables the highest time resolutions in single fluorescent-molecule imaging to date, which were photon-limited by fluorophore photophysics: 33 and 100 µs with single-molecule localization precisions of 34 and 20 nm, respectively, for Cy3, the optimal fluorophore we identified.

View Article and Find Full Text PDF

Two very polarized views exist for understanding the cellular plasma membrane (PM). For some, it is the simple fluid described by the original Singer-Nicolson fluid mosaic model. For others, due to the presence of thousands of molecular species that extensively interact with each other, the PM forms various clusters and domains that are constantly changing and therefore, no simple rules exist that can explain the structure and molecular dynamics of the PM.

View Article and Find Full Text PDF

Using single-molecule imaging with enhanced time resolutions down to 5 ms, we found that CD59 cluster rafts and GM1 cluster rafts were stably induced in the outer leaflet of the plasma membrane (PM), which triggered the activation of Lyn, H-Ras, and ERK and continually recruited Lyn and H-Ras right beneath them in the inner leaflet with dwell lifetimes <0.1 s. The detection was possible due to the enhanced time resolutions employed here.

View Article and Find Full Text PDF

Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol.

View Article and Find Full Text PDF

The number and subunit compositions of AMPA receptors (AMPARs), hetero- or homotetramers composed of four subunits GluA1-4, in the synapse is carefully tuned to sustain basic synaptic activity. This enables stimulation-induced synaptic plasticity, which is central to learning and memory. The AMPAR tetramers have been widely believed to be stable from their formation in the endoplasmic reticulum until their proteolytic decomposition.

View Article and Find Full Text PDF

Single-fluorescent-molecule imaging tracking (SMT) is becoming an important tool to study living cells. However, photobleaching and photoblinking (hereafter referred to as photobleaching/photoblinking) of the probe molecules strongly hamper SMT studies of living cells, making it difficult to observe in vivo molecular events and to evaluate their lifetimes (e.g.

View Article and Find Full Text PDF

Electron tomography of the plasma membrane (PM) identified several layers of cortical actin meshwork running parallel to the PM cytoplasmic surface throughout the PM. Here, cortical actin structures and dynamics were examined in living cells, using super-resolution microscopy, with (x,y)- and z-resolutions of ~140 and ~400 nm, respectively, and single-molecule imaging. The super-resolution microscopy identified sub-micron-sized actin clusters that appeared identical by both phalloidin post-fixation staining and Lifeact-mGFP expression followed by fixation, and therefore, these actin clusters were named "actin-pl-clusters".

View Article and Find Full Text PDF

The central mechanism for the transmission of the prion protein misfolding is the structural conversion of the normal cellular prion protein to the pathogenic misfolded prion protein, by the interaction with misfolded prion protein. This process might be enhanced due to the homo-dimerization/oligomerization of normal prion protein. However, the behaviors of normal prion protein in the plasma membrane have remained largely unknown.

View Article and Find Full Text PDF

The mechanisms by which the diffusion rate in the plasma membrane (PM) is regulated remain unresolved, despite their importance in spatially regulating the reaction rates in the PM. Proposed models include entrapment in nanoscale noncontiguous domains found in PtK2 cells, slow diffusion due to crowding, and actin-induced compartmentalization. Here, by applying single-particle tracking at high time resolutions, mainly to the PtK2-cell PM, we found confined diffusion plus hop movements (termed "hop diffusion") for both a nonraft phospholipid and a transmembrane protein, transferrin receptor, and equal compartment sizes for these two molecules in all five of the cell lines used here (actual sizes were cell dependent), even after treatment with actin-modulating drugs.

View Article and Find Full Text PDF

Methods for imaging and tracking single molecules conjugated with fluorescent probes, called single-molecule tracking (SMT), are now providing researchers with the unprecedented ability to directly observe molecular behaviors and interactions in living cells. Current SMT methods are achieving almost the ultimate spatial precision and time resolution for tracking single molecules, determined by the currently available dyes. In cells, various molecular interactions and reactions occur as stochastic and probabilistic processes.

View Article and Find Full Text PDF

The recent rapid accumulation of knowledge on the dynamics and structure of the plasma membrane has prompted major modifications of the textbook fluid-mosaic model. However, because the new data have been obtained in a variety of research contexts using various biological paradigms, the impact of the critical conceptual modifications on biomedical research and development has been limited. In this review, we try to synthesize our current biological, chemical, and physical knowledge about the plasma membrane to provide new fundamental organizing principles of this structure that underlie every molecular mechanism that realizes its functions.

View Article and Find Full Text PDF