Publications by authors named "Tajhal D Patel"

Background: The BCG vaccine induces trained immunity, an epigenetic-mediated increase in innate immune responsiveness. Therefore, this clinical trial evaluated if BCG-induced trained immunity could decrease coronavirus disease 2019 (COVID-19)-related frequency or severity.

Methods: A double-blind, placebo-controlled clinical trial of healthcare workers randomized participants to vaccination with BCG TICE or placebo (saline).

View Article and Find Full Text PDF
Article Synopsis
  • The DNA damage response is crucial for keeping our genes intact, and its disruption is often linked to cancer development, with PPM1D acting as a key negative regulator.
  • Researchers used CRISPR/Cas9 to find vulnerabilities in cancer cells with mutations in PPM1D, identifying superoxide dismutase-1 (SOD1) as a promising target.
  • The study showed that PPM1D-mutant cells have high levels of reactive oxygen species and struggle with oxidative stress, suggesting that targeting SOD1 could be a new treatment approach for these types of cancers.
View Article and Find Full Text PDF

Osteosarcoma is the most prevalent bone tumor in pediatric patients. Neoadjuvant chemotherapy has improved osteosarcoma patient survival, however the 5-year survival rate for localized osteosarcoma is 75% with a 30-50% recurrence rate. We, therefore, sought to identify a prognostic gene signature which could predict poor prognosis in localized osteosarcoma patients.

View Article and Find Full Text PDF
Article Synopsis
  • The DNA damage response is crucial for keeping our genetic material stable and its disruption is often linked to cancer development.
  • PPM1D acts as a key negative regulator of this response, and mutations in this gene have been found in various cancers, making it a potential target for new treatments.
  • Using CRISPR/Cas9 screening, researchers identified SOD1 as a promising target for cells with PPM1D mutations, showing that these cells have higher levels of reactive oxygen species and struggle with oxidative stress, indicating a new cancer therapy approach.
View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary bone tumor of childhood. Approximately 20%-30% of OSs carry amplification of chromosome 8q24, which harbors the oncogene c-MYC and correlates with a poor prognosis. To understand the mechanisms that underlie the ability of MYC to alter both the tumor and its surrounding tumor microenvironment (TME), we generated and molecularly characterized an osteoblast-specific Cre-Lox-Stop-Lox-c-MycT58A p53fl/+ knockin genetically engineered mouse model (GEMM).

View Article and Find Full Text PDF

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that is activated by environmental toxicants, like halogenated and polycyclic aromatic hydrocarbons, and then binds to DNA and regulates gene expression. AHR is involved in various physiological processes, including liver and immune system function, cell cycle regulation, oncogenesis, and metabolism. In the canonical pathway, AHR binds to a consensus DNA sequence (GCGTC), termed the xenobiotic response element (XRE), recruits protein coregulators, and regulates target gene expression.

View Article and Find Full Text PDF

Ewing Sarcoma (EwS) is the second most common malignant bone tumor in adolescents and young adults. The single-most powerful predictor of outcome in EwS is presence of metastatic burden at the time of diagnosis. Patients with metastatic Ewing Sarcoma have an abysmal 5-year survival rate of 10%-25%, which has not changed over the past 30-40 years.

View Article and Find Full Text PDF

Osteosarcoma, the most common pediatric bone tumor, is an aggressive heterogeneous malignancy defined by complex chromosomal aberrations. Overall survival rates remain at ~70%, but patients with chemoresistant or metastatic disease have extremely poor outcomes of <30%. A subgroup of tumors harbor amplification of chromosome 8q24.

View Article and Find Full Text PDF

Neuroblastoma (NB) is a childhood cancer arising from sympatho-adrenal neural crest cells. MYCN amplification is found in half of high-risk NB patients; however, no available therapies directly target MYCN. Using multi-dimensional metabolic profiling in MYCN expression systems and primary patient tumors, we comprehensively characterized the metabolic landscape driven by MYCN in NB.

View Article and Find Full Text PDF
Article Synopsis
  • Non-small cell lung cancer (NSCLC), which includes lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC), represents about 85% of lung tumors, and this study aimed to find unique metabolite-related gene signatures and their altered metabolic pathways for these types.
  • The research integrated transcriptomics (gene expression) and metabolomics (metabolite profiling) from 30 human lung tumors to discover differences in metabolites between cancerous and noncancerous tissues.
  • The study identified distinct metabolic gene signatures for LUAD and LUSC, revealing that altered metabolites and gene expressions are linked to poor survival in LUAD, which could guide the use of drugs like AZD-6482 as
View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children, with overall long-term survival rates of ∼65-70%. Thus, additional molecular insights and representative models are critical for identifying and evaluating new treatment modalities. Using MyoD-Cre-mediated introduction of mutant K-RasG12D and perturbations in p53, we developed a novel genetically engineered mouse model (GEMM) for RMS.

View Article and Find Full Text PDF

Ewing sarcoma (ES) is the second most common bone tumor in children and young adults. Unfortunately, there have been minimal recent advancements in improving patient outcomes, especially in metastatic and recurrent diseases. In this study, we investigated the biological role of p21-activated kinases (PAKs) in ES, and the ability to therapeutically target them in high-risk disease.

View Article and Find Full Text PDF