The differentiation and suppressive functions of regulatory CD4 T cells (Tregs) are supported by a broad array of metabolic changes, providing potential therapeutic targets for immune modulation. In this study, we focused on the regulatory role of glycolytic enzymes in Tregs and identified phosphoglycerate mutase (PGAM) as being differentially overexpressed in Tregs and associated with a highly suppressive phenotype. Pharmacologic or genetic inhibition of PGAM reduced Treg differentiation and suppressive function while reciprocally inducing markers of a pro-inflammatory, T helper 17 (Th17)-like state.
View Article and Find Full Text PDFBAF (SWI/SNF) chromatin remodelers engage binding partners to generate site-specific DNA accessibility. However, the basis for interaction between BAF and divergent binding partners has remained unclear. Here, we tested the hypothesis that scaffold proteins augment BAF's binding repertoire by examining β-catenin (CTNNB1) and steroidogenic factor 1 (SF-1, NR5A1), a transcription factor central to steroid production in human cells.
View Article and Find Full Text PDFBackground: Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that affects multiple organs, including the skin and kidneys. The etiology of SLE remains unclear but involves hormonal, environmental, and genetic factors. Environmental factors, such as diet and microbiota-derived metabolites, among which short-chain fatty acids (SCFAs) are major players, can influence autoimmune disease pathogenesis.
View Article and Find Full Text PDFBackground: Exposomes are critical drivers of carcinogenesis. However, how they modulate tumor behavior remains unclear. Extensive clinical data show cigarette smoke to be a key exposome that promotes aggressive tumors, higher rates of metastasis, reduced response to chemoradiotherapy, and suppressed anti-tumor immunity.
View Article and Find Full Text PDFThe differentiation and suppressive functions of regulatory CD4 T cells (Tregs) are supported by a broad array of metabolic changes, providing potential therapeutic targets for immune modulation. In this study, we focused on the regulatory role of glycolytic enzymes in Tregs and identified phosphoglycerate mutase (PGAM) as being differentially overexpressed in Tregs and associated with a highly suppressive phenotype. Pharmacologic or genetic inhibition of PGAM reduced Treg differentiation and suppressive function while reciprocally inducing markers of a pro-inflammatory, T helper 17 (Th17)-like state.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
November 2023
The liver plays a significant role in regulating a wide range of metabolic, homeostatic, and host-defense functions. However, the impact of liver injury on the host's ability to control bacteremia and morbidity in sepsis is not well understood. Leukocyte recruitment and activation lead to cytokine and chemokine release, which, in turn, trigger hepatocellular injury and elevate nucleotide levels in the extracellular milieu.
View Article and Find Full Text PDFBackground: Respiratory tract microbial dysbiosis can exacerbate inflammation and conversely inflammation may cause dysbiosis. Dysbiotic microbiome metabolites may lead to bronchopulmonary dysplasia (BPD). Hyperoxia and lipopolysaccharide (LPS) interaction alters lung microbiome and metabolome, mediating BPD lung injury sequence.
View Article and Find Full Text PDFJ Cell Sci
December 2019
Cells are internally organized into compartmentalized organelles that execute specialized functions. To understand the functions of individual organelles and their regulations, it is critical to resolve the compositions of individual organelles, which relies on a rapid and efficient isolation method for specific organellar populations. Here, we introduce a robust affinity purification method for rapid isolation of intracellular organelles (e.
View Article and Find Full Text PDFMalonic acid (MA), methylmalonic acid (MMA), and ethylmalonic acid (EMA) metabolites are implicated in various non-cancer disorders that are associated with inborn-error metabolism. In this study, we have slightly modified the published 3-nitrophenylhydrazine (3NPH) derivatization method and applied it to derivatize MA, MMA, and EMA to their hydrazone derivatives, which were amenable for liquid chromatography- mass spectrometry (LC-MS) quantitation. 3NPH was used to derivatize MA, MMA, and EMA, and multiple reaction monitoring (MRM) transitions of the corresponding derivatives were determined by product-ion experiments.
View Article and Find Full Text PDF