Material science has historically evolved in tandem with advancements in technologies for characterization, synthesis, and computation. Another type of technology to add to this mix is machine learning (ML) and artificial intelligence (AI). Now increasingly sophisticated AI-models are seen that can solve progressively harder problems across a variety of fields.
View Article and Find Full Text PDFTunnel oxide passivated contacts (TOPCon) have gained interest as a way to increase the energy conversion efficiency of silicon solar cells, and the International Technology Roadmap of Photovoltaics forecasts TOPCon to become an important technology despite a few remaining challenges. To review the recent development of TOPCon cells, this work has compiled a dataset of all device data found in current literature, which sums up to 405 devices from 131 papers. This may seem like a surprisingly small number of cells given the recent interest in the TOPCon architecture, but it illustrates a problem of data dissemination in the field.
View Article and Find Full Text PDFHalide perovskites solar cells are now approaching commercialisation. In this transition from academic research towards industrialisation, standardized testing protocols and reliable dissemination of performance metrics are crucial. In this study, we analyze data from over 16,000 publications in the Perovskite Database to investigate the assumed equality between the integrated external quantum efficiency and the short circuit current from JV measurements.
View Article and Find Full Text PDFA heterojunction is the key junction for charge extraction in many thin film solar cell technologies. However, the structure and band alignment of the heterojunction in the operating device are often difficult to predict from calculations and, due to the complexity and narrow thickness of the interface, are difficult to measure directly. In this study, we demonstrate a technique for direct measurement of the band alignment and interfacial electric field variations of a fully functional lead halide perovskite solar cell structure under operating conditions using hard X-ray photoelectron spectroscopy (HAXPES).
View Article and Find Full Text PDF