Publications by authors named "Sylvain Lefort"

Article Synopsis
  • Fibrinolysis plays a crucial role in the release of hematopoietic stem cells from bone marrow, affecting the development of B-cell acute lymphoblastic leukemia (B-ALL).
  • Activation of plasmin, driven by annexin A2, alters the extracellular matrix (ECM), which impacts cancer cell growth by trapping the growth factor IGF1 and hindering signaling pathways.
  • Inhibiting plasmin activation with ε-aminocaproic acid (EACA) shows promise in reducing tumor size and extending survival in B-ALL models, suggesting that targeting fibrinolysis could be a helpful addition to cancer treatment.
View Article and Find Full Text PDF

Background: In the present work, we aimed at modeling a relaxation experiment which consists in selecting a subfraction of a cell population and observing the speed at which the entire initial distribution for a given marker is reconstituted.

Methods: For this we first proposed a modification of a previously published mechanistic two-state model of gene expression to which we added a state-dependent proliferation term. This results in a system of two partial differential equations.

View Article and Find Full Text PDF

Unlabelled: An accurate estimate of patient survival at diagnosis is critical to plan efficient therapeutic options. A simple and multiapplication tool is needed to move forward the precision medicine era. Taking advantage of the broad and high CD10 expression in stem and cancers cells, we evaluated the molecular identity of aggressive cancer cells.

View Article and Find Full Text PDF

The medullary niche is a complex ecosystem that is essential to maintain homeostasis for resident cells. Indeed, the bone marrow, which includes a complex extracellular matrix and various cell types, such as mesenchymal stem cells, osteoblasts, and endothelial cells, is deeply involved in hematopoietic stem cell regulation through direct cell-cell interactions, as well as cytokine production. To closely mimic this in vivo structure and conduct experiments reflecting the responses of the human bone marrow, several 3D models have been created based on biomaterials, relying primarily on primary stromal cells.

View Article and Find Full Text PDF

Lipid raft-associated proteins play a vital role in membrane-mediated processes. The lipid microdomain-associated protein flotillin 2 (FLOT2), which has a scaffolding function, is involved in polarization, as well as in actin cytoskeletal organization of primitive and mature hematopoietic cells and has been associated with different malignancies. However, its involvement in myeloid leukemias is not well studied.

View Article and Find Full Text PDF

Understanding mechanisms of cancer development is mandatory for disease prevention and management. In healthy tissue, the microenvironment or niche governs stem cell fate by regulating the availability of soluble molecules, cell-cell contacts, cell-matrix interactions, and physical constraints. Gaining insight into the biology of the stem cell microenvironment is of utmost importance, since it plays a role at all stages of tumorigenesis, from (stem) cell transformation to tumor escape.

View Article and Find Full Text PDF

Bone marrow is a complex and dynamic microenvironment that provides essential cues to resident cells. We developed a standardized three-dimensional (3D) model to decipher mechanisms that control human cells during hematological and non-hematological processes. Our simple 3D-model is constituted of a biphasic calcium phosphate-based scaffold and human cell lines to ensure a high reproducibility.

View Article and Find Full Text PDF

Breast cancer heterogeneity has made it challenging to identify mechanisms critical to the initial stages of their genesis in vivo. Here, we sought to interrogate the role of YB-1 in newly arising human breast cancers as well as in established cell lines. In a first series of experiments, we found that short-hairpin RNA-mediated knockdown of YB-1 in MDA-MB-231 cells blocked both their local tumour-forming and lung-colonising activity in immunodeficient mice.

View Article and Find Full Text PDF

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice.

View Article and Find Full Text PDF

Assessment of autophagy activity has historically been limited to investigations of fixed tissue or bulk cell populations. To address questions of heterogeneity and relate measurements to functional properties of viable cells isolated from primary tissue, we created a lentiviral (RFP-GFP-MAP1LC3B) vector that allows the autophagosome and autolysosome content of transduced cells to be monitored at the single-cell level. Use of this strategy to analyze purified subsets of normal human mammary cells showed that both the luminal progenitor-containing (LP) subset and the basal cells (BCs) display highly variable but overall similar autophagic flux activity despite differences suggested by measurements of the proteins responsible (i.

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP) pathway regulates the fate and proliferation of normal hematopoietic stem cells (HSC) as well as interactions with their niche. While BMP2 and BMP4 promote HSC differentiation, only BMP4 maintains HSC pool and favors interactions with their niche. In myeloid leukemia, we have identified intrinsic and extrinsic dysregulations of the BMP pathway in Chronic Myeloid Leukemia (CML) and Acute Myeloid leukemia (AML) responsible for leukemic stem cells (LSC) survival.

View Article and Find Full Text PDF

Chronic myelogenous leukemia arises from the transformation of hematopoietic stem cells by the BCR-ABL oncogene. Though transformed cells are predominantly BCR-ABL-dependent and sensitive to tyrosine kinase inhibitor treatment, some BMPR1B+ leukemic stem cells are treatment-insensitive and rely, among others, on the bone morphogenetic protein (BMP) pathway for their survival via a BMP4 autocrine loop. Here, we further studied the involvement of BMP signaling in favoring residual leukemic stem cell persistence in the bone marrow of patients having achieved remission under treatment.

View Article and Find Full Text PDF

Specific and reciprocal interactions with the bone marrow microenvironment (BMM) govern the course of hematological malignancies. Matrix metalloproteinase-9 (MMP-9), secreted by leukemia cells, facilitates tumor progression via remodeling of the extracellular matrix (ECM) of the BMM. Hypothesizing that leukemias may instruct the BMM to degrade the ECM, we show, that MMP-9-deficiency in the BMM prolongs survival of mice with BCR-ABL1-induced B-cell acute lymphoblastic leukemia (B-ALL) compared with controls and reduces leukemia-initiating cells.

View Article and Find Full Text PDF

High YAP activity is associated with poor prognosis human breast cancers, but its role during the initial stage of mammary cell transformation is unknown. To address this question, we designed experiments that exploit the ability of KRAS-transduced subsets of freshly isolated normal human mammary cells to form invasive tumors rapidly and efficiently when transplanted into immunodeficient mice. Initial examination of the newly developing tumors thus generated revealed a consistent marked loss of nuclear YAP, independent of the initial primary human mammary cell type transduced.

View Article and Find Full Text PDF

The mammary gland in adult women consists of biologically distinct cell types that differ in their surface phenotypes. Isolation and molecular characterization of these subpopulations of mammary cells have provided extensive insights into their different transcriptional programs and regulation. This information is now serving as a baseline for interpreting the heterogeneous features of human breast cancers.

View Article and Find Full Text PDF

In a significant number of cases cancer therapy is followed by a resurgence of more aggressive tumors derived from immature cells. One example is acute myeloid leukemia (AML), where an accumulation of immature cells is responsible for relapse following treatment. We previously demonstrated in chronic myeloid leukemia that the bone morphogenetic proteins (BMP) pathway is involved in stem cell fate and contributes to transformation, expansion, and persistence of leukemic stem cells.

View Article and Find Full Text PDF

The microenvironment (niche) governs the fate of stem cells (SCs) by balancing self-renewal and differentiation. Increasing evidence indicates that the tumor niche plays an active role in cancer, but its important properties for tumor initiation progression and resistance remain to be identified. Clinical data show that leukemic stem cell (LSC) survival is responsible for disease persistence and drug resistance, probably due to their sustained interactions with the tumor niche.

View Article and Find Full Text PDF

Most human breast cancers have diversified genomically and biologically by the time they become clinically evident. Early events involved in their genesis and the cellular context in which these events occur have thus been difficult to characterize. Here we present the first formal evidence of the shared and independent ability of basal cells and luminal progenitors, isolated from normal human mammary tissue and transduced with a single oncogene (KRAS(G12D)), to produce serially transplantable, polyclonal, invasive ductal carcinomas within 8 weeks of being introduced either subrenally or subcutaneously into immunodeficient mice.

View Article and Find Full Text PDF

The triple-negative breast cancer (TN BC) subtype is the most aggressive form of invasive BC. Despite intensive efforts to improve BC treatments, patients with TN BC continue to exhibit poor survival, with half developing resistance to chemotherapy. Here we identify autophagy as a key mechanism in the progression and chemoresistance of a subset of TN tumors.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a transcriptional repressor, K-bZIP. We previously demonstrated that K-bZIP suppresses interferon (IFN)-β expression. Here, we provide evidence that K-bZIP affects IFN signaling, resulting in impaired IFN-stimulated genes expression.

View Article and Find Full Text PDF

JunD regulates genes involved in antioxidant defence. We took advantage of the chronic oxidative stress resulting from junD deletion to examine the role of reactive oxygen species (ROS) in tumour development. In a model of mammary carcinogenesis, junD inactivation increased tumour incidence and revealed an associated reactive stroma.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of three human proliferative disorders, namely, Kaposi's sarcoma, primary effusion lymphomas (PEL), and multicentric Castleman's disease. Lytic DNA replication of KSHV, which is essential for viral propagation, requires the binding of at least two KSHV proteins, replication and transactivation activator (RTA) and K-bZIP, on the lytic origin of replication. Moreover, K-bZIP physically interacts with RTA and represses its transactivation activity on several viral promoters in transient transfection assays.

View Article and Find Full Text PDF