Publications by authors named "Colin A Hammond"

Recent studies indicate the human lympho-myeloid restriction process to be a different and more heterogeneous one than historically inferred. Here we describe the development of bulk and clonal culture systems that efficiently support early B-lymphoid differentiation and its use to elucidate the biological and molecular changes that accompany their initial restriction from subsets of CD34+ human cord blood cells with lympho-myeloid-limited potential. Analyses of these changes revealed that the acquisition of B-lymphoid- and neutrophil/monocyte (NM)-restricted properties are accompanied by a concomitantly accelerated and lineage-shared cell cycling activity and loss of self-renewal potential.

View Article and Find Full Text PDF

The advancement of cell transplantation approaches requires model systems that allow an accurate assessment of transplanted cell functional potency. For the central nervous system, although xenotransplantation remains state-of-the-art, such models are technically challenging, limited in throughput, and expensive. Moreover, the environmental signals present do not perfectly cross-react with human cells.

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs), like their counterparts in mice, comprise a functionally and molecularly heterogeneous population of cells throughout life that collectively maintain required outputs of mature blood cells under homeostatic conditions. In both species, an early developmental change in the HSC population involves a postnatal switch from a state in which most of these cells exist in a rapidly cycling state and maintain a high self-renewal potential to a state in which the majority of cells are in a quiescent state with an overall reduced self-renewal potential. However, despite the well-established growth factor dependence of HSC proliferation, whether and how this mechanism of HSC regulation might be affected by aging has remained poorly understood.

View Article and Find Full Text PDF

Previous studies of aging have revealed intrinsically determined alterations in the properties of the hematopoietic stem cell (HSC) and progenitor compartments in mice, with variable evidence of an extension of these findings to humans. To examine more closely the surface phenotypes within the CD34 compartment of human blood and bone marrow from birth to old age, we undertook a 13-parameter phenotypic profile analysis of samples from healthy human donors aged 0-76 years. The results indicate a conserved stability of canonically defined phenotype frequencies within the CD34 compartment across this age spectrum, in contrast to previously reported losses of historically defined progenitor phenotypes associated with lymphoid-restricted outputs with advancing age.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells resist a process called anoikis (cell death from detachment) to spread throughout the body, and a specific protein called IL1RAP plays a crucial role in this survival.
  • Research shows that IL1RAP is upregulated by certain oncogenes in Ewing sarcoma, allowing these cancer cells to thrive and spread despite being detached.
  • Since IL1RAP is mostly absent in healthy tissues, targeting it with anti-IL1RAP antibodies could present a new immunotherapy strategy against Ewing sarcoma.
View Article and Find Full Text PDF

Hematopoietic clones with leukemogenic mutations arise in healthy people as they age, but progression to acute myeloid leukemia (AML) is rare. Recent evidence suggests that the microenvironment may play an important role in modulating human AML population dynamics. To investigate this concept further, we examined the combined and separate effects of an oncogene (c-MYC) and exposure to interleukin-3 (IL-3), granulocyte-macrophage colony-stimulating factor (GM-CSF), and stem cell factor (SCF) on the experimental genesis of a human AML in xenografted immunodeficient mice.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a type of cancer called B-cell precursor acute lymphoid leukemia (BCP-ALL) that affects blood cells.
  • They found that BCP-ALL cells have a unique way of copying their DNA that is different from normal B-cells and can change depending on the type of leukemia.
  • By comparing the DNA copying patterns of normal and leukemia cells, they found special traits in BCP-ALL cells that could help understand how the cancer develops and why it might come back after treatment.
View Article and Find Full Text PDF

Recent advances in single-cell molecular analytical methods and clonal growth assays are enabling more refined models of human hematopoietic lineage restriction processes to be conceptualized. Here, we report the results of integrating single-cell proteome measurements with clonally determined lymphoid, neutrophilic/monocytic, and/or erythroid progeny outputs from >1000 index-sorted CD34 human cord blood cells in short-term cultures with and without stromal cells. Surface phenotypes of functionally examined cells were individually mapped onto a molecular landscape of the entire CD34 compartment constructed from single-cell mass cytometric measurements of 14 cell surface markers, 20 signaling/cell cycle proteins, and 6 transcription factors in ∼300 000 cells.

View Article and Find Full Text PDF

Increasing evidence of functional and transcriptional heterogeneity in phenotypically similar cells examined individually has prompted interest in obtaining parallel methylome data. We describe the development and application of such a protocol to index-sorted murine and human hematopoietic cells that are highly enriched in their content of functionally defined stem cells. Utilizing an optimized single-cell bisulfite sequencing protocol, we obtained quantitative DNA methylation measurements of up to 5.

View Article and Find Full Text PDF

Elucidation of the identity and diversity of mechanisms that sustain long-term human blood cell production remains an important challenge. Previous studies indicate that, in adult mice, this property is vested in cells identified uniquely by their ability to clonally regenerate detectable, albeit highly variable levels and types, of mature blood cells in serially transplanted recipients. From a multi-parameter analysis of the molecular features of very primitive human cord blood cells that display long-term cell outputs in vitro and in immunodeficient mice, we identified a prospectively separable CD33CD34CD38CD45RACD90CD49f phenotype with serially transplantable, but diverse, cell output profiles.

View Article and Find Full Text PDF

The role of growth factors (GFs) in controlling the biology of human hematopoietic stem cells (HSCs) remains limited by a lack of information concerning the individual and combined effects of GFs directly on the survival, Mitogenesis, and regenerative activity of highly purified human HSCs. We show that the initial input HSC activity of such a purified starting population of human cord blood cells can be fully maintained over a 21-day period in serum-free medium containing five GFs alone. HSC survival was partially supported by any one of these GFs, but none were essential, and different combinations of GFs variably stimulated HSC proliferation.

View Article and Find Full Text PDF

Several growth factors (GFs) that together promote quiescent human hematopoietic stem cell (HSC) expansion ex vivo have been identified; however, the molecular mechanisms by which these GFs regulate the survival, proliferation. and differentiation of human HSCs remain poorly understood. We now describe experiments in which we used mass cytometry to simultaneously measure multiple surface markers, transcription factors, active signaling intermediates, viability, and cell-cycle indicators in single CD34 cord blood cells before and up to 2 hours after their stimulation with stem cell factor, Fms-like tyrosine kinase 3 ligand, interleukin-3, interleukin-6, and granulocyte colony-stimulating factor (5 GFs) either alone or combined.

View Article and Find Full Text PDF