Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.
View Article and Find Full Text PDFCub domain-containing protein 1 (CDCP1) is a protein that is highly expressed on the surface of many cancer cells. However, its distribution in normal tissues and its potential roles in nontumor cells are poorly understood. We found that CDCP1 is present on both human and mouse retinal pigment epithelial (RPE) cells.
View Article and Find Full Text PDFThe zebrafish is a valuable vertebrate model to study cardiovascular formation and function due to the facile visualization and rapid development of the circulatory system in its externally growing embryos. Despite having distinct advantages, zebrafish have paralogs of many important genes, making reverse genetics approaches inefficient since generating animals bearing multiple gene mutations requires substantial efforts. Here, we present a simple and robust synthetic CRISPR RNA/Cas9-based mutagenesis approach for generating biallelic F0 zebrafish knockouts.
View Article and Find Full Text PDFVascular endothelial cells (vECs) in the brain exhibit structural and functional heterogeneity. Fenestrated, permeable brain vasculature mediates neuroendocrine function, body-fluid regulation, and neural immune responses; however, its vascular formation remains poorly understood. Here, we show that specific combinations of vascular endothelial growth factors (Vegfs) are required to selectively drive fenestrated vessel formation in the zebrafish myelencephalic choroid plexus (mCP).
View Article and Find Full Text PDFWe had previously reported presence of histone deacetylase 6 (HDAC6) in sperm and demonstrated its tubulin deacetylase activity and role in sperm motility in rat. In the present study we report its abundant expression in testis, epididymis, accessory sex organs, brain, and adrenal. In the testis, HDAC6 transcript and protein were observed throughout development.
View Article and Find Full Text PDFCell Tissue Res
February 2018
The published online version contains mistake. The chimeric peptide should read as 'DPSVLYVSLHRYGGYMNEGELRV'. It was inadvertently written as 'DPSVLYVSLYVSLHRYGGYMNEGELR' a mistake which we missed during proof reading.
View Article and Find Full Text PDFCytoskeleton (Hoboken)
September 2017
Motility in sperm is driven by the flagella, the principal component of which is the axoneme. The microtubules which make up the 9 + 2 axoneme are composed of heterodimers of alpha and beta tubulins and undergo several post-translational modifications. We have earlier reported that HDAC6 functions as tubulin deacetylase in sperm and has a role in sperm movement.
View Article and Find Full Text PDFCell Tissue Res
February 2015
Histone deacetylase 6 (HDAC6) is an alpha (α)-tubulin deacetylase and its over-expression has been demonstrated to promote chemotactic cell movement. Motility in sperm is driven by the flagella, the cytoskeletal structure comprising the microtubules, which are heterodimers of α- and β-tubulins. We have hypothesized that HDAC6, by virtue of being an α-tubulin deacetylase, might modulate sperm motility.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2006
Aging is known in all organisms that have different somatic and reproductive cells or in unicellular organisms that divide asymmetrically. Bacteria that divide symmetrically were believed to be immune to natural aging. The demonstration of functionally asymmetric division and aging in Escherichia coli recently has challenged this belief and led to the suggestion that aging might be inevitable for all life forms.
View Article and Find Full Text PDF