Dermatofibrosarcoma protuberans (DFSP) is a neoplasm of the dermis with a tendency for aggressive local growth and recurrence. A minority of DFSP cases may transform into higher-grade sarcoma (fibrosarcomatous transformation, FST-DFSP) which is associated with more aggressive behavior and risk of metastasis. The histologic diagnosis of FST-DFSP may be challenging, particularly in small biopsies.
View Article and Find Full Text PDFRibosomes are central to protein synthesis in all organisms. Among mammals, the ribosome functional core is highly conserved. Remarkably, two rodent species, the naked mole-rat (NMR) and tuco-tuco display fragmented 28S rRNA, coupled with high translational fidelity and long lifespan.
View Article and Find Full Text PDFKu70 and Ku80 form the Ku heterodimer, a ring-shaped complex that initiates the non-homologous end-joining (NHEJ) DNA repair pathway. Ku binds to double-stranded DNA ends and recruits other NHEJ factors, including LIG4 and DNA-PKcs. Although Ku can bind to double-stranded RNA (dsRNA) and trap mutated DNA-PKcs on ribosomal RNA, the physiological role of the Ku-RNA interaction in otherwise wild-type cells remains unclear.
View Article and Find Full Text PDFKu70 and Ku80 form Ku, a ring-shaped protein that initiates the non-homologous end-joining (NHEJ) DNA repair pathway. Specifically, Ku binds to double-stranded DNA (dsDNA) ends and recruits other NHEJ factors ( , DNA-PKcs and LIG4). While Ku binds to double-stranded RNA (dsRNA) and traps mutated-DNA-PKcs on ribosomal RNA the physiological significance of Ku-dsRNA interactions in otherwise wild-type cells remains elusive.
View Article and Find Full Text PDFThe rapid kinetics of biological processes and associated short-lived conformational changes pose a significant challenge in attempts to structurally visualize biomolecules during a reaction in real time. Conventionally, on-pathway intermediates have been trapped using chemical modifications or reduced temperature, giving limited insights. Here, we introduce a time-resolved cryo-EM method using a reusable PDMS-based microfluidic chip assembly with high reactant mixing efficiency.
View Article and Find Full Text PDFThe rapid kinetics of biological processes and associated short-lived conformational changes pose a significant challenge in attempts to structurally visualize biomolecules during a reaction in real time. Conventionally, on-pathway intermediates have been trapped using chemical modifications or reduced temperature, giving limited insights. Here we introduce a novel time-resolved cryo-EM method using a reusable PDMS-based microfluidic chip assembly with high reactant mixing efficiency.
View Article and Find Full Text PDFThis work is based on the manifold-embedding approach to study biological molecules exhibiting continuous conformational changes. Previous work established a method-now termed ManifoldEM-capable of reconstructing 3D movies and accompanying free-energy landscapes from single-particle cryo-EM images of macromolecules exercising multiple conformational degrees of freedom. While ManifoldEM has proven its viability in several experimental studies, critical limitations and uncertainties have been found throughout its extended development and use.
View Article and Find Full Text PDFEarly Alzheimer's disease (AD) pathology can be found in cortical biopsies taken during shunt placement for Normal Pressure Hydrocephalus. This represents an opportunity to study early AD pathology in living patients. Here we report RNA-seq data on 106 cortical biopsies from this patient population.
View Article and Find Full Text PDFBiophys J
October 2021
This article bemoans the demise of truly modular open-source image processing systems, such as SPIDER, in recent years' development of tools for three-dimensional reconstruction in cryo-electron microscopy. Instead, today's users have to rely on the functionality of software systems that have little or no transparency. As a consequence, users of such packages no longer gain a conceptual understanding and intuitive grasp of the analytical routes leading from the stream of input data to the final density map.
View Article and Find Full Text PDFNat Chem
October 2021
SARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded 'down' to an exposed 'up' state to bind the human angiotensin-converting enzyme 2 receptor and infect cells. While snapshots of the 'up' and 'down' states have been obtained by cryo-electron microscopy and cryo-electron tomagraphy, details of the RBD-opening transition evade experimental characterization. Here over 130 µs of weighted ensemble simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD-opening pathways.
View Article and Find Full Text PDFSARS-CoV-2 infection is controlled by the opening of the spike protein receptor binding domain (RBD), which transitions from a glycan-shielded "down" to an exposed "up" state in order to bind the human ACE2 receptor and infect cells. While snapshots of the "up" and "down" states have been obtained by cryoEM and cryoET, details of the RBD opening transition evade experimental characterization. Here, over 130 μs of weighted ensemble (WE) simulations of the fully glycosylated spike ectodomain allow us to characterize more than 300 continuous, kinetically unbiased RBD opening pathways.
View Article and Find Full Text PDFRecent approaches to the study of biological molecules employ manifold learning to single-particle cryo-EM data sets to map the continuum of states of a molecule into a low-dimensional space spanned by eigenvectors or "conformational coordinates". This is done separately for each projection direction (PD) on an angular grid. One important step in deriving a consolidated map of occupancies, from which the free energy landscape of the molecule can be derived, is to propagate the conformational coordinates from a given choice of "anchor PD" across the entire angular space.
View Article and Find Full Text PDFRecently, major progress has been made in uncovering the mechanisms of how insulin engages its receptor and modulates downstream signal transduction. Here, we present in detail the current structural knowledge surrounding the individual components of the complex, binding sites, and dynamics during the activation process. A novel kinase triggering mechanism, the 'bow-arrow model', is proposed based on current knowledge and computational simulations of this system, in which insulin, after its initial interaction with binding site 1, engages with site 2 between the fibronectin type III (FnIII)-1 and -2 domains, which changes the conformation of FnIII-3 and eventually translates into structural changes across the membrane.
View Article and Find Full Text PDFThe work of molecular machines such as the ribosome is accompanied by conformational changes, often characterized by relative motions of their domains. The method we have developed seeks to quantify these motions in a general way, facilitating comparisons of results obtained by different researchers. Typically there are multiple snapshots of a structure in the form of pdb coordinates resulting from flexible fitting of low-resolution density maps, from X-ray crystallography, or from molecular dynamics simulation trajectories.
View Article and Find Full Text PDFWhile DNA-directed nanotechnology is now a well-established platform for bioinspired nanoscale assembly in vitro, the direct targeting of various nanomaterials in living biological systems remains a significant challenge. Hybrid biological systems with integrated and targeted nanomaterials may have interesting and exploitable properties, so methods for targeting various nanomaterials to precise biological locations are required. Fluorescence imaging has benefited from the use of nanoparticles with superior optical properties compared to fluorescent organic dyes or fluorescent proteins.
View Article and Find Full Text PDFThe noncovalent equilibrium activation of a fluorogenic malachite green dye and its cognate fluorogen-activating protein (FAP) can produce a sparse labeling distribution of densely tagged genetically encoded proteins, enabling single molecule detection and super-resolution imaging in fixed and living cells. These sparse labeling conditions are achieved by control of the dye concentration in the milieu, and do not require any photoswitching or photoactivation. The labeling is achieved by using physiological buffers and cellular media, in which additives and switching buffers are not required to obtain super-resolution images.
View Article and Find Full Text PDFLocalization-based super resolution imaging is presently limited by sampling requirements for dynamic measurements of biological structures. Generating an image requires serial acquisition of individual molecular positions at sufficient density to define a biological structure, increasing the acquisition time. Efficient analysis of biological structures from sparse localization data could substantially improve the dynamic imaging capabilities of these methods.
View Article and Find Full Text PDFThe ability to detect single molecules over the electronic noise requires high performance detector systems. Electron Multiplying Charge-Coupled Device (EMCCD) cameras have been employed successfully to image single molecules. Recently, scientific Complementary Metal Oxide Semiconductor (sCMOS) based cameras have been introduced with very low read noise at faster read out rates, smaller pixel sizes and a lower price compared to EMCCD cameras.
View Article and Find Full Text PDF