Negative-sense RNA viruses (NSVs) carrying a non-segmented genome encompass a broad group of viruses responsible for numerous human diseases such as rabies, mumps, measles, respiratory illness and encephalitis. Viruses replicate intracellular and interact with various host proteins to evade the immune response and persist within the host. A salient trait of NSVs is their ability to form cytoplasmic inclusion bodies (IBs) which are believed to serve as pivotal sites for viral replication.
View Article and Find Full Text PDFFront Oncol
July 2025
Background: This study investigates the predictive potential of circulating cytokines for response and survival outcomes in patients with advanced non-small cell lung cancer (NSCLC) undergoing immune checkpoint inhibitor (ICI) therapy.
Materials And Methods: A cohort of 64 patients with advanced NSCLC receiving ICI therapy were included. Baseline serum samples were collected prior to ICI initiation and profiled using a multiplex cytokine panel.
Immune checkpoint inhibitors (ICIs) have revolutionized the field of cancer therapy and it is a huge step forward in the treatment of various cancers including head and neck cancer. Nivolumab, an anti-PD-1 monoclonal antibody, reportedly has improved overall survival in head and neck cancer, yet only a subset of patient population benefit from it. Tissue-based markers such as PD-L1expression positive, tumor mutation burden-high, and microsatellite instability-high are widely believed to be a biomarker for ICIs such as nivolumab in solid tumors.
View Article and Find Full Text PDFCommensal bacteria that breach endothelial barrier has been reported to induce low grade chronic inflammation producing disease symptoms in major peripheral tissues. In this study, we investigated the role of genetically modified cellular invasive form of commensal E. coli K12 (SK3842) in cognitive impairment.
View Article and Find Full Text PDFNegative-strand RNA viruses form cytoplasmic inclusion bodies (IBs) representing virus replication foci through phase separation or biomolecular condensation of viral and cellular proteins, as a hallmark of their infection. Alternatively, mammalian cells form stalled mRNA containing antiviral stress granules (SGs), as a consequence of phosphorylation of eukaryotic initiation factor 2α (eIF2α) through condensation of several RNA-binding proteins including TIA-1. Whether and how Chandipura virus (CHPV), an emerging human pathogen causing influenza-like illness, coma and death, forms IBs and evades antiviral SGs remain unknown.
View Article and Find Full Text PDFCD40 agonist antibodies (αCD40) have shown promising anti-tumor response in both preclinical and early clinical studies. However, its systemic administration is associated with immune- and hepato-toxicities which hampers its clinical usage. In addition, αCD40 showed low tumor retention and induced PD-L1 expression which makes tumor microenvironment (TME) immunosuppressive.
View Article and Find Full Text PDFInterleukin-12 (IL-12) demonstrates potent antitumor activity by enhancing Th1/Th2 response, facilitating cytotoxic T-cell (CTL) recruitment into tumors, inhibiting tumor angiogenesis, and depleting immunosuppressive cells in the tumor microenvironment (TME). Despite having encouraging preclinical and some clinical results, further development of IL-12 is limited because dose-limiting toxicity is observed in early clinical trials with systemic administration of recombinant human IL-12. Hence, strategies aiming to lower the toxicity and to improve response rates are unmet needs.
View Article and Find Full Text PDFHyperactivation of the complement system, a major component of innate immunity, has been recognized as one of the core clinical features in severe covid-19 patients. However, how the virus escapes the targeted elimination by the network of activated complement pathways still remains an enigma. Here, we identified SARS-CoV-2-encoded ORF8 protein as one of the major binding partners of human complement C3/C3b components and their metabolites.
View Article and Find Full Text PDFObjective: Growing evidences suggest systemic pathogen-induced neuroimmune interaction is a major risk factor for several neurological disorders. Our goal was to investigate whether asymptomatic peripheral carriage of Staphylococcus aureus, a widespread opportunistic pathogen, could modulate selective molecular features in brain tissues.
Methods: To address this, a peripheral infection model was developed by challenging Wistar rats repeatedly with a clinical strain of S.
Psychopharmacology (Berl)
July 2018
A large volume of research now provides evidence correlating aberrant histone deacetylase (HDAC) activities and hypoacetylation of histones to disruptions in synaptic plasticity, neuronal survival/regeneration, memory formation and consolidation. Hence, maintaining the acetyl-histone homeostasis as a component of neuronal mechanisms by targeting HDACs has emerged as an exciting intervention strategy for several neuropsychiatric disorders. Though extensive preclinical animal studies have elevated the translational potential of HDAC inhibitors (HDACis) in psychiatric disorders, so far, the translational gain remains low.
View Article and Find Full Text PDFRecent evidence reveals that prolactin gene expression (PRL-GE) in mammotropes occurs in pulses, but the molecular process(es) underlying this phenomenon remains unclear. Earlier, we have identified an E-box (E-box133) in the rat PRL promoter that binds several circadian elements and is critical for this dynamic process. Preliminary analysis revealed a Pit-1 binding site (P2) located immediately adjacent to this E-box133 raising the possibility that some type of functional relationship may exist between these two promoter regions.
View Article and Find Full Text PDFRationale: Aberrations in cellular acetate-utilization processes leading to global histone hypoacetylation have been implicated in the etiology of neuropsychiatric disorders like schizophrenia.
Objectives: Here, we investigated the role of acetate supplementation in the form of glyceryl triacetate (GTA) for the ability to restore the N-methyl D-aspartate (NMDA) receptor-induced histone hypoacetylation and to ameliorate associated behavioral phenotypes in mice.
Results: Taking cues from the studies in SH-SY5Y cells, we monitored acetylation status of specific lysine residues of histones H3 and H4 (H3K9 and H4K8) to determine the impact of oral GTA supplementation in vivo.
Though growing evidence implicates both melatonin (MLT) and its immediate precursor N-acetylserotonin (NAS) in the regulation of hippocampal neurogenesis, their comparative mechanistic relationship with core behavioural correlates of psychiatric disorders is largely unknown. To address this issue, we investigated the ability of these indoleamines to mitigate the behavioral phenotypes associated with NMDA-receptor (NMDAR) hypofunction in mice. We demonstrated that exogenous MLT and NAS treatments attenuated the NMDAR antagonist (ketamine) induced immobility in the forced swim test (FST) but not the classical striatum-related hyperlocomotor activity phenotype.
View Article and Find Full Text PDFNeuropharmacology
November 2012
Ketamine, an NMDA receptor antagonist has been shown to induce aberrant behaviour phenotypes in rodents, some of which are known to simulate the behaviour abnormalities observed in patients suffering from schizophrenia. Thus, developing ketamine-induced animal models became an important tool of choice to study the mechanistic details of some critical symptoms associated with schizophrenia. In this study, our goal was to characterize and correlate the ketamine-induced changes in the behavioural phenotypes to the changes in neurochemical and molecular profile(s) in the brain tissues implicated in the pathophysiology of schizophrenia.
View Article and Find Full Text PDFLack of appropriate animal models simulating core behavioural aspects of human psychosis is a major limitation in schizophrenia research. The use of drugs, that is believed to act through N-methyl d-aspartate receptor, has been demonstrated to mimic relatively broader range of behavioural symptoms in putative animal models. Our goal in this study has been to further evaluate one such drug, ketamine in mice and characterize some selective behavioural phenotypes associated with the drug dosage, treatment period and withdrawal effects to extend the understanding of this model.
View Article and Find Full Text PDFMicroarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function.
View Article and Find Full Text PDFThe pineal gland plays an essential role in vertebrate chronobiology by converting time into a hormonal signal, melatonin, which is always elevated at night. Here we have analyzed the rodent pineal transcriptome using Affymetrix GeneChip(R) technology to obtain a more complete description of pineal cell biology. The effort revealed that 604 genes (1,268 probe sets) with Entrez Gene identifiers are differentially expressed greater than 2-fold between midnight and mid-day (false discovery rate <0.
View Article and Find Full Text PDFArylalkylamine N-acetyltransferase (AANAT) catalyzes the N-acetylation of serotonin, the penultimate step in the synthesis of melatonin. Pineal AANAT activity increases at night in all vertebrates, resulting in increased melatonin production. This increases circulating levels of melatonin, thereby providing a hormonal signal of darkness.
View Article and Find Full Text PDFSerotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) is a member of the GCN5 N-acetyltransferase (GNAT) superfamily and catalyzes the penultimate step in the biosynthesis of melatonin; a large daily rhythm in AANAT activity drives the daily rhythm in circulating melatonin. We have used a structure-based computational approach to identify the first druglike and selective inhibitors of AANAT. Approximately 1.
View Article and Find Full Text PDFThe high affinity immunoglobulin E receptor (FcepsilonRI) complex is dedicated to immunoglobulin E-mediated allergic responses. Expression of the FcepsilonRI receptor is thought to be relatively stable and limited to mast cells, basophils, eosinophils, monocytes, Langerhans cells, platelets, and neutrophils. We now report that the FcepsilonRIalpha and FcepsilonRIgamma polypeptides are expressed in the pinealocyte, the melatonin-secreting cell of the pineal gland.
View Article and Find Full Text PDFSerotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) regulates the daily rhythm in the production of melatonin and is therefore an attractive target for pharmacologic modulation of the synthesis of this hormone. Previously prepared bisubstrate analogs show potent inhibition of AANAT but have unfavorable pharmacokinetic properties due to the presence of phosphate groups which prevents transfer across the plasma membrane. Here, we examine a bis-pivaloyloxymethylene (POM)-tryptamine-phosphopantetheine prodrug (2) and its biotransformations in vitro by homogenates and pineal cells.
View Article and Find Full Text PDFOtx2 is a vertebrate homeobox gene, which has been found to be essential for the development of rostral brain regions and appears to play a role in the development of retinal photoreceptor cells and pinealocytes. In this study, the temporal expression pattern of Otx2 was revealed in the rat brain, with special emphasis on the pineal gland throughout late embryonic and postnatal stages. Widespread high expression of Otx2 in the embryonic brain becomes progressively restricted in the adult to the pineal gland.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2005
The nocturnal increase in circulating melatonin in vertebrates is regulated by the activity of arylalkylamine N-acetyltransferase (AANAT), the penultimate enzyme in the melatonin pathway (serotonin --> N-acetylserotonin --> melatonin). Large changes in activity are linked to cyclic AMP-dependent protein kinase-mediated phosphorylation of AANAT T31. Phosphorylation of T31 promotes binding of AANAT to the dimeric 14-3-3 protein, which activates AANAT by increasing arylalkylamine affinity.
View Article and Find Full Text PDFSerotonin N-acetyltransferase (arylalkylamine N-acetyltransferase, AANAT) controls daily changes in the production and circulating levels of melatonin. Here, the significance of the phosphorylation of AANAT was studied using a semisynthetic enzyme in which a nonhydrolyzable phosphoserine/threonine mimetic, phosphonomethylenealanine (Pma), was incorporated at position 31 (AANAT-Pma31). The results of studies in which AANAT-Pma31 and related analogs were injected into cells provide the first direct evidence that Thr31 phosphorylation controls AANAT stability in the context of the intact cells by binding to 14-3-3 protein.
View Article and Find Full Text PDFThe large daily rhythm in circulating melatonin levels is a highly conserved feature of vertebrate physiology: high values always occur at night. The dynamics of the rhythm are controlled by the next-to-last enzyme in melatonin synthesis (serotonin --> N-acetylserotonin --> melatonin), arylalkylamine N-acetyltransferase (AANAT), the "melatonin rhythm enzyme". In vertebrate biology, AANAT plays a unique time-keeping role as the molecular interface between the environment and the hormonal signal of time, melatonin.
View Article and Find Full Text PDF