Publications by authors named "Sumesh P Thampi"

We show that a suspension of noninteracting deformable particles subjected to an oscillatory shear flow leads to development of nematic order that arises from the phenomenon of phase synchronization. The synchronized state corresponds to a unique, stable limit cycle confined in the toroidal state space. The limit cycle exists since, unlike rigid particles, deformable particles can modulate aspect ratio, adjust their tumbling rate, and thus achieve phase synchronization.

View Article and Find Full Text PDF

The desiccation of microliter drops containing colloidal particles often results in the coffee-ring effect, where non-volatile particles deposit at the drop periphery. Such deposits form primarily due to a radially outward flow generated within the drop during the drying process. In this work, we consider drying drops containing mixtures of oppositely charged species as a universal method to tune the morphology of dried deposits, including a complete suppression of the coffee-ring effect.

View Article and Find Full Text PDF

Active nematic fluids exhibit complex dynamics in both bulk and in simple confining geometries. However, complex confining geometries could have substantial impact on active spontaneous flows. Using multiparticle collision dynamics simulations adapted for active nematic particles, we study the dynamic behaviour of an active nematic fluid confined in a corrugated channel.

View Article and Find Full Text PDF

The association of similarly charged surfactant molecules and nanoparticles in an aqueous solution remains unresolved, and the understandings reported in the literature are conflicting. To address this issue, we undertake a fundamental study to investigate bulk and interfacial phenomena in binary mixtures of (i) positively charged nanoparticles and cationic surfactants and (ii) negatively charged nanoparticles and anionic surfactants. We find that the surfactant molecules adsorb on the surface of the nanoparticle despite similar charge, leading to supercharging of particles and simultaneously driving more surfactant molecules to the air-dispersion interface.

View Article and Find Full Text PDF

Anisotropic particles are often encountered in different fields of soft matter and complex fluids. In this work, we present an implementation of the coupled hydrodynamics of solid ellipsoidal particles and the surrounding fluid using the lattice Boltzmann method. A standard link-based mechanism is used to implement the solid-fluid boundary conditions.

View Article and Find Full Text PDF

Colloidal self-assembly has garnered significant attention in recent research, owing to applications in medical and engineering domains. Understanding the arrangement of particles in self-assembled systems is crucial for comprehending the underlying physics and synthesizing complex nano- and microscale structures. In this study, we introduce a novel methodology for analyzing the spatial distribution of particles in colloidal assemblies, focusing specifically on quantifying the microstructure of deposits formed by the evaporation of colloidal particle-laden drops.

View Article and Find Full Text PDF

Two-dimensional numerical simulations are carried out to study the spreading dynamics of a droplet placed in the vicinity of a fluid-fluid interface. Simulations are performed using the hybrid lattice-Boltzmann technique and the diffuse-interface model by considering three immiscible fluids of the same density and viscosity. In contrast to the well-studied spreading of drops placed symmetrically across fluid-fluid interfaces, this work considers the simultaneous migration, spreading and eventual adsorption of an asymmetrically placed drop.

View Article and Find Full Text PDF

The deposit patterns obtained from the evaporation of drops containing insoluble solute particles are vital for several technologies, including inkjet printing and optical and electronic device manufacturing. In this work, we consider the evaporation of an aqueous reaction mixture typically used for gold nanoparticle (AuNP) synthesis. The patterns obtained from the evaporation-driven assembly of in situ generated AuNPs are studied using optical microscopy and SEM analyses.

View Article and Find Full Text PDF

We use linear stability analysis and hybrid lattice Boltzmann simulations to study the dynamical behavior of an active nematic confined in a channel made of viscoelastic material. We find that the quiescent, ordered active nematic is unstable above a critical activity. The transition is to a steady flow state for high elasticity of the channel surroundings.

View Article and Find Full Text PDF

Generating core-shell particles with a well-controlled morphology is of great interest due to the interdependence between the morphology and different properties of these structures. These particles are often generated in microfluidic devices in a background quadratic flow. Therefore, in this study, we investigate the hydrodynamics and morphology of a concentric active compound particle, an active particle encapsulated in a fluid droplet, in an imposed quadratic flow.

View Article and Find Full Text PDF

Evaporation of colloidal dispersion drops leaves a deposit pattern where more particles are accumulated at the edge, popularly known as the coffee-ring effect. Such patterns formed from dried sessile drops are azimuthally symmetric. When the substrate is inclined, the symmetry of the patterns is altered due to the influence of gravity.

View Article and Find Full Text PDF

It has previously been shown that non-isothermal directional polymer crystallisation driven by local melting (Zone Annealing), has a close analogy with an equivalent isothermal crystallisation protocol. This surprising analogy is due to the low thermal conductivity of polymers-because they are poor thermal conductors, crystallisation occurs over a relatively narrow spatial domain while the thermal gradient spans a much wider scale. This separation of scales, which occurs in the limit of small sink velocity, allows replacing the crystallinity profile with a step and the temperature at the step acts as an effective isothermal crystallisation temperature.

View Article and Find Full Text PDF

Drying drops of colloidal dispersions have attracted attention from researchers since the nineteenth century. The multiscale nature of the problem involving physics at different scales, namely colloidal and interfacial phenomena as well as heat, mass, and momentum transport processes, combined with the seemingly simple yet nontrivial shape of the drops makes drying drop problems rich and interesting. The scope of such studies widens as the physical and chemical nature of dispersed entities in the drop vary and as evaporation occurs in more complex configurations.

View Article and Find Full Text PDF

We show that confining extensile nematics in three-dimensional (3D) channels leads to the emergence of two self-organized flow states with nonzero helicity. The first is a pair of braided antiparallel streams-this double helix occurs when the activity is moderate, anchoring negligible, and reduced temperature high. The second consists of axially aligned counter-rotating vortices-this grinder train arises between spontaneous axial streaming and the vortex lattice.

View Article and Find Full Text PDF

The coffee ring effect, which refers to the formation of a ring-like deposit along the periphery of a dried particle laden sessile drop, is a commonly observed phenomenon. The migration of particles from the interior to the edge of a drying drop as a result of evaporation driven flow directed outwards, is well studied. In this article, we document the inward drift of a coffee stain, which is governed by the descent of the water-air interface of the drying drop due to solvent evaporation.

View Article and Find Full Text PDF

We perform lattice Boltzmann simulations of an active nematic fluid confined in a two-dimensional channel to study the range of flow states that are stabilised by the confinement: unidirectional flow, oscillatory flow, the dancing state, localised active turbulence and fully-developed active turbulence. We analyse the flows in Fourier space, and measure a range of different length scales which describe the flows. We argue that the different states occur as a result of flow instabilities inherent to the system.

View Article and Find Full Text PDF

Nearly fifty years ago Lovinger and Gryte suggested that the directional crystallization of a polymer was analogous to the quiescent isothermal crystallization experiment but at a supercooling where the crystal growth velocity was equal to the velocity of the moving front. Our experiments showed that this equivalence holds in a detailed manner at low directional velocities. To understand the underlying physics of these situations, we modeled the motion of a crystallization front in a liquid where the left side boundary is suddenly lowered below the melting point (Stefan's problem) but with the modification that the crystallization kinetics follow a version of the Avrami model.

View Article and Find Full Text PDF

The coffee ring effect results from the migration of particles in a drying particle laden drop and their subsequent deposition at the three phase contact line. The evaporative flux during the drying of sessile drops and the spatial distribution of particles in the coffee ring patterns exhibit azimuthal symmetry. It is possible to break this symmetry with the help of gravity by simply manipulating the inclination of the substrate on which the colloidal droplet undergoes drying.

View Article and Find Full Text PDF

The evaporation of colloidal dispersions is an elegant and straightforward route to controlled self-assembly of particles on a solid surface. In particular, the evaporation of particle laden drops placed on solid substrates has received considerable attention for more than two decades. Such particle filled drops upon complete evaporation of the solvent leave behind a residue, commonly called particulate deposit pattern.

View Article and Find Full Text PDF

Microswimmers interacting with passive particles in confinement are common in many systems, e.g., spermatozoa encountering other cells or debris in the female reproductive tract or active particles interacting with polymers and tracers in microfluidic channels.

View Article and Find Full Text PDF

Recent experimental work has shown that polymer crystallisation can be used to "move" and organize nanoparticles (NP). As a first effort at modeling this situation, we consider the classical Stefan problem but with the modification that polymer crystallisation does not occur at a single temperature. Rather, the rate of crystallisation is proportional to its subcooling, and here we employ a form inspired by the classical Avrami model to describe this functional form.

View Article and Find Full Text PDF

We use active nematohydrodynamics to study the flow of an active fluid in a 3D microchannel, finding a transition between active turbulence and regimes where there is a net flow along the channel. We show that the net flow is only possible if the active nematic is flow aligning and that, in agreement with experiments, the appearance of the net flow depends on the aspect ratio of the channel cross section. We explain our results in terms of when the hydrodynamic screening due to the channel walls allows the emergence of vortex rolls across the channel.

View Article and Find Full Text PDF

The particle laden sessile drops when dried on solid surfaces under certain conditions leave a deposit pattern wherein all the particles are confined to a narrow region close to the edge of the deposit. Such patterns which often form when coffee drops dry are referred to as the coffee ring patterns or the coffee stains. Recent research points to the formation of intriguing patterns when colloidal particle laden drops are dried in configurations other than sessile mode.

View Article and Find Full Text PDF

The spreading of a liquid on another is often encountered in oil spills and coatings and is also of industrial relevance in pharmaceuticals and petrochemicals. In this study, the spreading of oil drops on aqueous solutions containing cationic, anionic, and nonionic surfactants over a wide range of surfactant concentrations is investigated. The spreading behavior quantified by measuring the time evolution of the projected area of the oil lens reveals the occurrence of a maximum, which is strongly dependent on the concentration of the surfactant in the aqueous solution.

View Article and Find Full Text PDF

The patterns resulting from drying particle-laden sessile drops (for example, coffee rings, where the particles are concentrated more at the edge, and their complete suppression, where the particles are uniformly distributed throughout the pattern) have been well studied for more than two decades. For the ubiquitous instance of occurrence of drying of drops containing nonvolatile species (either dissolved or dispersed) on substrates oriented at different angles with respect to gravity, the investigation of resulting evaporative patterns has not received much attention. This mini-review addresses the need to investigate the drying of drops residing on inclined surfaces and highlights recent advances in this field.

View Article and Find Full Text PDF