Comput Methods Biomech Biomed Engin
September 2025
Many traditional classification networks directly use the limb two-lead signal (MLII) ECG signals as input for training. However, this method suffers from reduced accuracy when ECG features are not obvious, especially for premature heartbeats. To solve the issue, this paper proposed a novel network, namely CDLR-Net, that combines a Deep Residual Shrinkage Network (DRSN) with a Long Short-Term Memory (LSTM).
View Article and Find Full Text PDF. Although deep learning-based current methods have achieved impressive results in electrocardiograph (ECG) arrhythmia classification issues, they rely on using the original data to identify arrhythmia categories. However, a large amount of data generated by long-term ECG monitoring pose a significant challenge to the limited-bandwidth and real-time systems, which limits the application of deep learning in ECG monitoring.
View Article and Find Full Text PDFDespite being widely utilized to help endoscopists identify gastrointestinal (GI) tract diseases using classification and segmentation, models based on convolutional neural network (CNN) have difficulties in distinguishing the similarities among some ambiguous types of lesions presented in endoscopic images, and in the training when lacking labeled datasets. Those will prevent CNN from further improving the accuracy of diagnosis. To address these challenges, we first proposed a Multi-task Network (TransMT-Net) capable of simultaneously learning two tasks (classification and segmentation), which has the transformer designed to learn global features and can combine the advantages of CNN in learning local features so that to achieve a more accurate prediction in identifying the lesion types and regions in GI tract endoscopic images.
View Article and Find Full Text PDFComput Methods Programs Biomed
April 2023
Background And Objective: A deep learning-based intelligent diagnosis system can significantly reduce the burden of endoscopists in the daily analysis of esophageal lesions. Considering the need to add new tasks in the diagnosis system, a deep learning model that can train a series of tasks incrementally using endoscopic images is essential for identifying the types and regions of esophageal lesions.
Method: In this paper, we proposed a continual learning-based esophageal lesion network (CLELNet), in which a convolutional autoencoder was designed to extract representation features of endoscopic images among different esophageal lesions.
It is challenging for endoscopists to accurately detect esophageal lesions during gastrointestinal endoscopic screening due to visual similarities among different lesions in terms of shape, size, and texture among patients. Additionally, endoscopists are busy fighting esophageal lesions every day, hence the need to develop a computer-aided diagnostic tool to classify and segment the lesions at endoscopic images to reduce their burden. Therefore, we propose a multi-task classification and segmentation (MTCS) model, including the Esophageal Lesions Classification Network (ELCNet) and Esophageal Lesions Segmentation Network (ELSNet).
View Article and Find Full Text PDFThe automatic analysis of endoscopic images to assist endoscopists in accurately identifying the types and locations of esophageal lesions remains a challenge. In this paper, we propose a novel multi-task deep learning model for automatic diagnosis, which does not simply replace the role of endoscopists in decision making, because endoscopists are expected to correct the false results predicted by the diagnosis system if more supporting information is provided. In order to help endoscopists improve the diagnosis accuracy in identifying the types of lesions, an image retrieval module is added in the classification task to provide an additional confidence level of the predicted types of esophageal lesions.
View Article and Find Full Text PDF