Publications by authors named "Subramanian Venkatesan"

Deep eutectic solvents (DESs) are innovative solvents that are revolutionizing green chemistry with their versatile properties, enabling sustainable transformations and cutting-edge technological advancements. Many choline chloride (ChCl)/carboxylic acid eutectic mixtures are hygroscopic and exhibit elevated viscosity due to strong hydrogen-bonding interactions. Even small amounts of water can significantly reduce their viscosity by disrupting the hydrogen bond network and promoting the formation of distinct DES-HO nanoclusters.

View Article and Find Full Text PDF

Three-dimensional fused-ring frameworks, especially those incorporating heteroatoms, are fundamental to expanding chemical space and unlocking unique properties critical for drug discovery and functional materials, yet their synthesis remains a formidable challenge. Herein, we report for the first time the union of two distinct azolium salts as an efficient synthetic platform to access tertiary amine-caged frameworks under mild conditions. The strategy combines the masked nucleophilic and electrophilic properties of isoquinolinium and pyridinium salts, and avails double dearomatization guided inverse electron demand (4 + 2) or (3 + 2) annulation in a highly regio- and diastereoselective manner to construct the nitrogen caged motifs.

View Article and Find Full Text PDF

Chromosomal instability (CIN) is common in solid tumours and fuels evolutionary adaptation and poor prognosis by increasing intratumour heterogeneity. Systematic characterization of driver events in the TRACERx non-small-cell lung cancer (NSCLC) cohort identified that genetic alterations in six genes, including FAT1, result in homologous recombination (HR) repair deficiencies and CIN. Using orthogonal genetic and experimental approaches, we demonstrate that FAT1 alterations are positively selected before genome doubling and associated with HR deficiency.

View Article and Find Full Text PDF

A 72-year-old man presented to his general practitioner with worsening dyspnea and was diagnosed with having recurrent -positive stage IIIB NSCLC 8 years after initial diagnosis and radical treatment for early stage disease. He was subsequently started on entrectinib but required hospital admissions for recurrent acute kidney injuries on a background of chronic kidney disease. His entrectinib was withheld on day 20 since his first dose of treatment while he was being investigated.

View Article and Find Full Text PDF

The increasing global energy demand and environmental pollution necessitate the development of alternative, sustainable energy sources. Hydrogen production through electrochemical methods offers a carbon-free energy solution. In this study, we have designed novel boron nitride analogues (BNyne) and investigated their stability and electronic properties.

View Article and Find Full Text PDF

The realm of atomic catalysts has witnessed notable advancements; yet, the predominant focus remains on single atomic catalysts (SACs). The exploration and successful implementation of dual atomic catalysts (DACs) pose intricate challenges, primarily concerning thermodynamic stability and optimal metallic composition. To address these issues, we present a comprehensive theoretical investigation of α-2 graphyne (GPY)-based DACs, synthesized in-house with a keen focus on formation stability.

View Article and Find Full Text PDF

The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone.

View Article and Find Full Text PDF

The development of small-molecule organic solar cells with the required efficiency depends on the information obtained from molecular-level studies. In this context, 39 small-molecule donors featuring isoindigo as an acceptor moiety have been meticulously crafted for potential applications in bulk heterojunction organic solar cells. These molecules follow the D-A-D-A-D and D-A-π-D-π-A-D framework.

View Article and Find Full Text PDF

Rice metabolomics is widely used for biomarker research in the fields of pharmacology. As a consequence, characterization of the variations of the pigmented and non-pigmented traditional rice varieties of Tamil Nadu is crucial. These varieties possess fatty acids, sugars, terpenoids, plant sterols, phenols, carotenoids and other compounds that plays a major role in achieving sustainable development goal 2 (SDG 2).

View Article and Find Full Text PDF

Developing efficient catalysts for ammonia synthesis is increasingly crucial but remains a formidable challenge due to the lack of robust design criteria, particularly in addressing the activity and selectivity issues, especially in electrochemical nitrogen reduction reactions (NRR). In this study, we systematically investigated the catalytic potential of hexagonal boron nitride (BN) embedded with non-metal (C, Si, P and S) atoms as an electrocatalyst for the nitrogen reduction reaction using density functional theory (DFT) computations. The preference for non-metal-doped BN nanomaterials stems from their ability to suppress hydrogen evolution and their environmentally friendly nature, in contrast to transition metals.

View Article and Find Full Text PDF

An efficient approach for the synthesis of chiral pyrrolo[1,2-][1,4]thiazine-2-carbaldehydes is achieved via formal 1,3-dipolar cycloaddition/rearrangement reactions of benzothiazolium salt and α,β-unsaturated aldehydes, utilizing an asymmetric organocatalyst. This process results in the formation of fluorescent, highly enantioenriched chiral molecules with three contiguous stereogenic centers, one of which is a chiral quaternary center, with excellent yields and enantio- and diastereoselectivity. A computational study demonstrated the understanding of the reaction mechanism.

View Article and Find Full Text PDF

In this study, an extensive exploration survey of wild progeny was conducted which yielded 18 candidate plus trees (CPTs) of . Seeds of these CPTs were collected from diverse locations between 10°54' and 28°07' E longitude, and 76°27' and 95°32' N latitude, covering 18 different locations across 5 states of the Indian subcontinent. The objective of the progeny trial was to assess genetic associations and variability in growth and physio-chemical characteristics.

View Article and Find Full Text PDF
Article Synopsis
  • A small group of glioblastoma multiforme (GBM) patients survives over 36 months, leading researchers to investigate the role of chromosomal instability (CIN) in survival outcomes among different GBM patient groups.
  • The study includes histological examinations of missegregated chromosomes and bioinformatics analysis of CIN signatures in various glioma types, including long-term survivors and IDH-mutant grade 4 astrocytomas.
  • While CIN is widespread in high-grade gliomas, the findings indicate that it does not significantly contribute to long-term survival in GBM, though specific CIN signatures may hold prognostic value for grade 4 glioma patients.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of the APOBEC3B (A3B) enzyme in lung cancer, specifically in non-small-cell lung cancer (NSCLC) driven by the epidermal growth factor receptor (EGFR).
  • It was found that A3B expression can limit tumor growth in mouse models but is linked to resistance against EGFR-targeted therapies in tumors.
  • The research suggests that A3B could be targeted to improve the effectiveness of cancer treatments, as its upregulation was observed in both preclinical models and patients undergoing EGFR-targeted therapy.
View Article and Find Full Text PDF

Traditional rice is gaining popularity worldwide due to its high nutritional and pharmaceutical value, as well as its high resistance to abiotic and biotic stresses. This has attracted significant attention from breeders, nutritionists, and plant protection scientists in recent years. Hence, it is critical to investigate the grain metabolome to reveal germination and nutritional importance.

View Article and Find Full Text PDF

In the present study, a novel and unconventional two-dimensional (2D) material with Dirac electronic features has been designed using sulflower with the help of density functional theory methods and first principles calculations. This 2D material comprises of hetero atoms (C, S) and belongs to the tetragonal lattice with P /nmm space group. Scrutiny of the results show that the 2D nanosheet exhibits a nanoporous wave-like geometrical structure.

View Article and Find Full Text PDF

Generally, graphynes have been generated by the insertion of acetylenic content (-C≡C-) in the graphene network in different ratios. Also, several aesthetically pleasing architectures of two-dimensional (2D) flatlands have been reported with the incorporation of acetylenic linkers between the heteroatomic constituents. Prompted by the experimental realization of boron phosphide, which has provided new insights on the boron-pnictogen family, we have modelled novel forms of acetylene-mediated borophosphene nanosheets by joining the orthorhombic borophosphene stripes with different widths and with different atomic constituents using acetylenic linkers.

View Article and Find Full Text PDF

Naive CD4 T cells differentiate into effector (Th1, Th2, Th17) cells and immunosuppressive (Treg) cells upon antigenic stimulation in the presence of a specific cytokine milieu. The T cell culture system provides a very efficient model to study compounds' therapeutic activity and mechanism of action. (Willd.

View Article and Find Full Text PDF

The rational defect engineering of Mn-based spinel cathode materials by metal-ion doping and vacancy creation fosters reversible intercalation/deintercalation of charge carriers and boosts the charge storage performance of an aqueous rechargeable zinc-ion battery (ZIB). Herein, we demonstrate the Zn ion storage performance of a defect-engineered ternary spinel cathode based on Zn, Ni, and Mn. The defect engineering of ZnMnO is achieved by Ni doping and creating a cation (Mn and Zn) deficiency.

View Article and Find Full Text PDF

Unlabelled: Exploring the new therapeutic indications of known drugs for treating COVID-19, popularly known as drug repurposing, is emerging as a pragmatic approach especially owing to the mounting pressure to control the pandemic. Targeting multiple targets with a single drug by employing drug repurposing known as the polypharmacology approach may be an optimised strategy for the development of effective therapeutics. In this study, virtual screening has been carried out on seven popular SARS-CoV-2 targets (3CL, PL, RdRp (NSP12), NSP13, NSP14, NSP15, and NSP16).

View Article and Find Full Text PDF

Data science has been an invaluable part of the COVID-19 pandemic response with multiple applications, ranging from tracking viral evolution to understanding the vaccine effectiveness. Asymptomatic breakthrough infections have been a major problem in assessing vaccine effectiveness in populations globally. Serological discrimination of vaccine response from infection has so far been limited to Spike protein vaccines since whole virion vaccines generate antibodies against all the viral proteins.

View Article and Find Full Text PDF

Cyclic and acyclic vinyl substituted β-keto/enol carbonyl substrates, on reaction with arynes, result in differentially substituted naphthyl carbocycles, hitherto difficult to synthesize with existing protocols. While the substitutions on the arynes have no role, the ring size of the cyclic β-keto/enol esters has a profound influence on the product formation.

View Article and Find Full Text PDF

Synthesis of ammonia at ambient conditions is very demanding yet challenging to achieve due to the production of ammonia fuel, which is considered to be a future fuel for sustainable energy. In this context, computational studies on the catalytic activity of the edge sites of boron nitride nanomaterials for possible nitrogen reduction into ammonia have been investigated. Geometrical and electronic properties of zigzag and armchair B-open edges of BN sheet (B) models have been unraveled to substantiate their catalytic nature.

View Article and Find Full Text PDF

A vinylogy concept driven annulation strategy is developed to access [4,4]-carbospirocycles from alkylidene malononitriles and cyclopentene-1,3-diones. The reaction is catalyzed by an inexpensive organocatalyst and products with three stereocenters were obtained as a single diastereomer in high yields. The spiro-selectivity originates from the reaction of the thermodynamic enolate intermediate which is fundamentally intriguing.

View Article and Find Full Text PDF