Glioblastoma is a devastating disease with a high mortality rate. Gene therapy with anti-microRNA inhibitors has been suggested as a new modality for treatment of glioblastoma. In this study, glioblastoma-targeted extracellular vesicles (EVs) were produced with specific ligands and evaluated as a carrier of anti-microRNA-21 oligonucleotides (AMO21).
View Article and Find Full Text PDFHerpes simplex virus thymidine kinase (HSVtk) gene therapy is a promising strategy for glioblastoma therapy. However, delivery of plasmid DNA (pDNA) encoding HSVtk into the brain by systemic administration is a challenge since pDNA can hardly penetrate the blood-brain barrier. In this study, an exosome-membrane (EM) and polymer-based hybrid complex was developed for systemic delivery of pDNA into the brain.
View Article and Find Full Text PDFMetabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic condition encompassing metabolic dysfunction-associated steatotic liver (MASL) and metabolic dysfunction-associated steatohepatitis (MASH), which can progress to fibrosis, cirrhosis, or hepatocellular carcinoma (HCC). The heterogeneous and complex nature of MASLD complicates optimal drug development. Ebastine, an antihistamine, exhibits antitumor activity in various types of cancer.
View Article and Find Full Text PDFMacromol Biosci
April 2024
Cerebrospinal fluid (CSF) leakage is a common complication of intradural surgery or incidental durotomy in neurosurgery. Dural suturing is a common method for durotomy repair, but this technique requires a long operation time and includes the risk of CSF leakage by incomplete sealing. Glue-type sealants are effective for watertight dural closure.
View Article and Find Full Text PDFIntroduction: miRNA-21 (miR-21) is highly expressed in glioblastoma, facilitating tumor growth by blocking the expression of apoptosis-related genes. Therefore, an antisense microRNA oligonucleotide (AMO) against miR-21 was suggested as a therapeutic nucleic acid for glioblastoma.
Objectives: AMO21 co-micelles were developed with tumor-targeting T7 peptides as an AMO21 delivery system by intranasal administration.
Polymers (Basel)
May 2022
The increased use of plastics has led to severe environmental pollution, particularly by microplastics-plastic particles 5 mm or less in diameter. These particles are formed by environmental factors such as weathering and ultraviolet irradiation, thereby making environmental pollution worse. This environmental pollution intensifies human exposure to microplastics via food chains.
View Article and Find Full Text PDFFabrication strategies that pursue "simplicity" for the production process and "functionality" for a device, in general, are mutually exclusive. Therefore, strategies that are less expensive, less equipment-intensive, and consequently, more accessible to researchers for the realization of omnipresent electronics are required. Here, this study presents a conceptually different approach that utilizes the inartificial design of the surface roughness of paper to realize a capacitive pressure sensor with high performance compared with sensors produced using costly microfabrication processes.
View Article and Find Full Text PDFBiological creatures with unique surface wettability have long served as a source of inspiration for scientists and engineers. More specifically, materials exhibiting extreme wetting properties, such as superhydrophilic and superhydrophobic surfaces, have attracted considerable attention because of their potential use in various applications, such as self-cleaning fabrics, anti-fog windows, anti-corrosive coatings, drag-reduction systems, and efficient water transportation. In particular, the engineering of surface wettability by manipulating chemical properties and structure opens emerging biomedical applications ranging from high-throughput cell culture platforms to biomedical devices.
View Article and Find Full Text PDF