Publications by authors named "Stephen D Swenson"

Glioblastoma (GBM) is the most aggressive primary brain tumor, exhibiting a high rate of recurrence and poor prognosis. Surgery and chemoradiation with temozolomide (TMZ) represent the standard of care, but, in most cases, the tumor develops resistance to further treatment and the patients succumb to disease. Therefore, there is a great need for the development of well-tolerated, effective drugs that specifically target chemoresistant gliomas.

View Article and Find Full Text PDF

The prognosis for patients with glioblastoma (GB) remains grim. Concurrent temozolomide (TMZ) radiation-the cornerstone of glioma control-extends the overall median survival of GB patients by only a few months over radiotherapy alone. While these survival gains could be partly attributed to radiosensitization, this benefit is greatly minimized in tumors expressing O6-methylguanine DNA methyltransferase (MGMT), which specifically reverses O6-methylguanine lesions.

View Article and Find Full Text PDF

Background: Intracarotid injection of mannitol has been applied for decades to support brain entry of therapeutics that otherwise do not effectively cross the blood-brain barrier (BBB). However, the elaborate and high-risk nature of this procedure has kept its use restricted to well-equipped medical centers. We are developing a more straightforward approach to safely open the BBB, based on the intra-arterial (IA) injection of NEO100, a highly purified version of the natural monoterpene perillyl alcohol.

View Article and Find Full Text PDF

Snake venoms consist of a complex mixture of many bioactive molecules. Among them are disintegrins, which are peptides without enzymatic activity, but with high binding affinity for integrins, transmembrane receptors that function to connect cells with components of the extracellular matrix. Integrin-mediated cell attachment is critical for cell migration and dissemination, as well as for signal transduction pathways involved in cell growth.

View Article and Find Full Text PDF

Integrin targeting has been shown to be an effective approach for anticancer therapy. We engineered a recombinant disintegrin, vicrostatin (VCN), that binds with high affinity and specificity to the Arg-Gly-Asp (RGD) class of integrins, including αvβ3, αvβ5, and α5β1, involved in tumor invasion and metastasis. We used three different delivery modalities to examine anticancer activity of VCN in mouse models of human ovarian cancer, glioma, and prostate cancer.

View Article and Find Full Text PDF

Objective: Glioblastoma (GBM) is the most aggressive type of brain tumor with a high rate of tumor recurrence, and it often develops resistance over time to current standard of care chemotherapy. Its highly invasive nature plays an essential role in tumor progression and recurrence. Glioma stem cells (GSCs) are a subpopulation of glioma cells highly resistant to treatments and are considered responsible for tumor recurrence.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a highly aggressive primary brain tumor with a poor prognosis. Treatment with temozolomide, standard of care for gliomas, usually results in drug resistance and tumor recurrence. Therefore, there is a great need for drugs that target GBM.

View Article and Find Full Text PDF

Glioblastoma multiforme is a malignant brain tumor noted for its extensive vascularity, aggressiveness, and highly invasive nature, suggesting that cell migration plays an important role in tumor progression. The poor prognosis in GBM is associated with a high rate of tumor recurrence, and resistance to the standard of care chemotherapy, temozolomide (TMZ). The novel compound NEO212, a conjugate of TMZ and perillyl alcohol (POH), has proven to be 10-fold more cytotoxic to glioma stem cells (GSC) than TMZ, and is active against TMZ-resistant tumor cells.

View Article and Find Full Text PDF

Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited.

View Article and Find Full Text PDF

Similar to other integrin-targeting strategies, disintegrins have previously shown good efficacy in animal cancer models with favorable pharmacological attributes and translational potential. Nonetheless, these polypeptides are notoriously difficult to produce recombinantly due to their particular structure requiring the correct pairing of multiple disulfide bonds for biological activity. Here, we show that a sequence-engineered disintegrin (called vicrostatin or VCN) can be reliably produced in large scale amounts directly in the oxidative cytoplasm of Origami B E.

View Article and Find Full Text PDF

For internalization experiments that use fluorescent antibody (Ab) staining to distinguish between inside versus outside cellular localization of various receptor targeting ligands, it is critical that there be efficient removal of all residual surface-bound fluorescent Ab. To achieve this, a fluorescent Ab removal technique is commonly employed in receptor internalization assays that utilizes low pH glycine-based buffers to wash off the residual non-internalized fluorescent Ab retained on cell surfaces. In this study, we highlight the shortcomings of this technique and propose an alternative in situ proteolytic approach that we found to be non-deleterious to the cells and significantly more effective in removing the residual fluorescence resulting from non-internalized surface-bound Ab.

View Article and Find Full Text PDF

Disintegrins are a family of small (4-14 kDa) proteins that bind to another class of proteins, integrins. Therefore, as integrin inhibitors, they can be exploited as anticancer and antiplatelet agents. Acostatin, an alphabeta heterodimeric disintegrin, has been isolated from the venom of Southern copperhead (Agkistrodon contortrix contortrix).

View Article and Find Full Text PDF

Disintegrins are cysteine-rich RGD-containing peptides that block tumor-cell implantation and angiogenesis. Contortrostatin, a homodimeric disintegrin (64 residues in each chain) from southern copperhead snake venom, has been purified to homogeneity and crystallized. Initial attempts at crystallization led to a form grown from polyethylene glycol (PEG), which crystallizes in the orthorhombic space group C222(1), with unit-cell parameters a = 57.

View Article and Find Full Text PDF